Engineering Saccharomyces cerevisiae for the production of dihydroquercetin from naringenin

被引:9
|
作者
Yu, Shiqin [1 ,2 ,3 ,4 ,5 ]
Li, Mingjia [1 ,2 ,3 ,4 ,5 ]
Gao, Song
Zhou, Jingwen [1 ,2 ,3 ,4 ,5 ]
机构
[1] Jiangnan Univ, Sci Ctr Future Foods, 1800 Lihu Rd, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Minist Educ, Key Lab Ind Biotechnol, 1800 Lihu Rd, Wuxi 214122, Jiangsu, Peoples R China
[3] Jiangnan Univ, Sch Biotechnol, 1800 Lihu Rd, Wuxi 214122, Jiangsu, Peoples R China
[4] Jiangnan Univ, Engn Res Ctr, Minist Educ Food Synthet Biotechnol, 1800 Lihu Rd, Wuxi 214122, Jiangsu, Peoples R China
[5] Jiangnan Univ, Jiangsu Prov Engn Res Ctr Food Synthet Biotechnol, 1800 Lihu Rd, Wuxi 214122, Jiangsu, Peoples R China
关键词
Dihydroquercetin; Bioproduction; Saccharomyces cerevisiae; Naringenin; ENDOPLASMIC-RETICULUM; EFFICIENT BIOSYNTHESIS; P450; REDUCTASE; (2S)-NARINGENIN; ORGANIZATION; DEGRADATION; EXTRACTION; NADPH;
D O I
10.1186/s12934-022-01937-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background Dihydroquercetin (DHQ), a powerful bioflavonoid, has a number of health-promoting qualities and shows potential as a treatment for a number of disorders. Dihydroquercetin biosynthesis is a promising solution to meet the rising demand for dihydroquercetin. However, due to the significant accumulation of eriodietyol (ERI), naringenin (NAR), dihydrokaempferol (DHK), and other metabolites, the yield of DHQ biosynthesis is low. As a result, this is the hindrance to the biosynthesis of DHQ. Results In this study, we proposed several strategies to enhance the product formation and reduce the metabolites in accumulation. The flavonoid 3 '-hydroxylase (F3 ' H) and cytochrome P450 reductase from different species were co-expressed in S. cerevisiae, and the best strain expressing the P450-reductase enzyme complex (SmF3 ' H/ScCPR) yielded 435.7 +/- 7.6 mg/L of ERI from NAR in the deepwell microplate. The product conversion rate was improved further by mutating the predicted potential ubiquitination sites to improve SmF3 ' H stability, resulting in a 12.8% increase in titre using the mutant SmF3 ' H (K290R). Besides, different F3Hs from various sources and promoters were tested for the improved DHQ production, with the best strain producing 381.2 +/- 10.7 mg/L of DHQ from 1 g/L of NAR, suggesting the temporal regulation the expression of F3H is important for maximization the function of F3 ' H and F3H. Conclusion This study offers effective strategies for improving DHQ production from NAR and could be used as a reference for related research.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Engineering Saccharomyces cerevisiae for next generation ethanol production
    den Haan, Riaan
    Kroukamp, Heinrich
    Mert, Marlin
    Bloom, Marinda
    Goergens, Johann F.
    van Zyl, Willem H.
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2013, 88 (06) : 983 - 991
  • [32] Metabolic Engineering for Glycyrrhetinic Acid Production in Saccharomyces cerevisiae
    Guan, Ruobing
    Wang, Mengge
    Guan, Zhonghua
    Jin, Cheng-Yun
    Lin, Wei
    Ji, Xiao-Jun
    Wei, Yongjun
    Frontiers in Bioengineering and Biotechnology, 2020, 8
  • [33] Metabolic Engineering of Saccharomyces cerevisiae for Rosmarinic Acid Production
    Babaei, Mahsa
    Zamfir, Gheorghe M. Borja
    Chen, Xiao
    Christensen, Hanne Bjerre
    Kristensen, Mette
    Nielsen, Jens
    Borodina, Irina
    ACS SYNTHETIC BIOLOGY, 2020, 9 (08): : 1978 - 1988
  • [34] Engineering the biocatalytic selectivity of iridoid production in Saccharomyces cerevisiae
    Billingsley, John M.
    DeNicola, Anthony B.
    Barber, Joyann S.
    Tang, Man-Cheng
    Horecka, Joe
    Chu, Angela
    Garg, Neil K.
    Tang, Yi
    METABOLIC ENGINEERING, 2017, 44 : 117 - 125
  • [35] Engineering of the metabolism of Saccharomyces cerevisiae for anaerobic production of mannitol
    Costenoble, R
    Adler, L
    Niklasson, C
    Lidén, G
    FEMS YEAST RESEARCH, 2003, 3 (01) : 17 - 25
  • [36] Ethylene production by metabolic engineering of the yeast Saccharomyces cerevisiae
    Pirkov, I.
    Albers, E.
    Norbeck, J.
    Larsson, C.
    METABOLIC ENGINEERING, 2008, 10 (05) : 276 - 280
  • [37] Metabolic engineering of Saccharomyces cerevisiae for enhanced production of acetoin
    Bae, Sang-Jeong
    Kim, Sujin
    Hahn, Ji-Sook
    YEAST, 2015, 32 : S146 - S146
  • [38] Metabolic engineering of Saccharomyces cerevisiae for the production of isoprenoids.
    Paradise, EM
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 225 : U222 - U222
  • [39] Metabolic Engineering of Saccharomyces cerevisiae for Fermentative Production of Heme
    Lee, Hyun-Jae
    Shin, Dong Joo
    Nho, Soo Bin
    Lee, Ki Won
    Kim, Sun-Ki
    Biotechnology Journal, 2024, 19 (10)
  • [40] Engineering Saccharomyces cerevisiae for the production and secretion of Affibody molecules
    Gast, Veronica
    Sandegren, Anna
    Dunas, Finn
    Ekblad, Siri
    Guler, Rezan
    Thoren, Staffan
    Mohedano, Marta Tous
    Molin, Mikael
    Engqvist, Martin K. M.
    Siewers, Verena
    MICROBIAL CELL FACTORIES, 2022, 21 (01)