Use of Density Functional Based Tight Binding Methods in Vibrational Circular Dichroism

被引:6
|
作者
Teodoro, T. Q. [1 ,2 ]
Koenis, M. A. J. [3 ]
Ruger, R. [4 ]
Galembeck, S. E. [1 ]
Buma, W. J. [3 ]
Nicu, V. P. [5 ]
Visscher, L. [2 ]
机构
[1] Univ Sao Paulo, FFCLRP, Dept Quim, Ave Bandeirantes 3900, BR-14040901 Ribeirao Preto, SP, Brazil
[2] Vrije Univ Amsterdam, Fac Sci, Amsterdam Ctr Multiscale Modeling, De Boelelaan 1083, NL-1081 HV Amsterdam, Netherlands
[3] Univ Amsterdam, Vant Hoff Inst Mol Sci, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[4] Software Chem & Mat BV, De Boelelaan 1083, NL-1081 HV Amsterdam, Netherlands
[5] Lucian Blaga Univ Sibiu, Dept Environm Sci Phys Phys Educ & Sport, Ioan Ratiu St 7-9, Sibiu 550012, Romania
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2018年 / 122卷 / 49期
基金
巴西圣保罗研究基金会;
关键词
COUPLED OSCILLATOR MECHANISM; DFTB METHOD; OLD CONCEPT; ENERGY; APPROXIMATION; INTENSITIES; ABSORPTION; SPECTRA; MODEL; RHF;
D O I
10.1021/acs.jpca.8b08218
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Vibrational circular dichroism (VCD) is a spectroscopic technique used to resolve the absolute configuration of chiral systems. Obtaining a theoretical VCD spectrum requires computing atomic polar and axial tensors on top of the computationally demanding construction of the force constant matrix. In this study we evaluated a VCD model in which all necessary quantities are obtained with density functional based tight binding (DFTB) theory. The analyzed DFTB parametrizations fail at providing accurate vibrational frequencies and electric dipole gradients but yield reasonable normal modes at a fraction of the computational cost of density functional theory (DFT). Thus, by applying DFTB in composite methods along with DFT, we show that it is possible to obtain accurate VCD spectra at a much lower computational demand.
引用
收藏
页码:9435 / 9445
页数:11
相关论文
共 50 条
  • [41] Density-Functional Based Tight-Binding: an Approximate DFT Method
    Oliveira, Augusto F.
    Seifert, Gotthard
    Heine, Thomas
    Duarte, Helio A.
    JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, 2009, 20 (07) : 1193 - 1205
  • [42] Density-functional based tight-binding calculations on thiophene polymorphism
    Widany, J
    Daminelli, G
    Di Carlo, A
    Lugli, P
    VLSI DESIGN, 2001, 13 (1-4) : 393 - 397
  • [43] Exploring machine learning methods for absolute configuration determination with vibrational circular dichroism
    Vermeyen, Tom
    Brence, Jure
    Van Echelpoel, Robin
    Aerts, Roy
    Acke, Guillaume
    Bultinck, Patrick
    Herrebout, Wouter
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (35) : 19781 - 19789
  • [44] Tight-binding approach to natural circular dichroism in the X-ray region
    Okutani, M
    Jo, T
    Carra, P
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1999, 68 (10) : 3191 - 3194
  • [45] Linear scaling density functional tight binding models
    Giese, Timothy J.
    York, Darrin M.
    Kuechler, Erich
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [46] Size-Dependent Stability of Nonhelical and Helical Copper Nanowires Using Density Functional Theory and Density-Functional-Based Tight-Binding Methods
    He, C.
    Wu, X. L.
    Zhang, W. X.
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2015, 7 (11) : 911 - 916
  • [47] Density-functional tight-binding for beginners
    Koskinen, Pekka
    Makinen, Ville
    COMPUTATIONAL MATERIALS SCIENCE, 2009, 47 (01) : 237 - 253
  • [48] Comparison of density-functional, tight-binding, and empirical methods for the simulation of amorphous carbon
    Marks, NA
    Cooper, NC
    McKenzie, DR
    McCulloch, DG
    Bath, P
    Russo, SP
    PHYSICAL REVIEW B, 2002, 65 (07) : 1 - 9
  • [49] Density functional tight binding: values of semi-empirical methods in an ab initio era
    Cui, Qiang
    Elstner, Marcus
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (28) : 14368 - 14377
  • [50] A comparative study of density functional and density functional tight binding calculations of defects in graphene
    Zobelli, Alberto
    Ivanovskaya, Viktoria
    Wagner, Philipp
    Suarez-Martinez, Irene
    Yaya, Abu
    Ewels, Chris P.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2012, 249 (02): : 276 - 282