Uncertainty bounds on modal parameters obtained from stochastic subspace identification

被引:353
|
作者
Reynders, Edwin [1 ]
Pintelon, Rik [2 ]
De Roeck, Guido [1 ]
机构
[1] Katholieke Univ Leuven, Dept Civil Engn, B-3001 Heverlee, Belgium
[2] Vrije Univ Brussel, Dept ELEC, B-1050 Brussels, Belgium
关键词
system identification; operational modal analysis; subspace methods; covariance analysis; uncertainty bounds; mechanical systems; civil engineering structures;
D O I
10.1016/j.ymssp.2007.10.009
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The modal parameters of a structure that are estimated from ambient vibration measurements are always subject to bias and variance errors. In this paper, it is discussed how part of the bias errors can be removed and how the variance errors can be estimated from a single ambient vibration test. The bias removal procedure makes use of a stabilization diagram. The variance estimation procedure uses the first-order sensitivity of the modal parameter estimates to perturbations of the measured output-only data. This methodology, that is generally applicable, is illustrated here for the reference-based covariance-driven stochastic subspace identification algorithm. Both simulated and measured vibration data are used to demonstrate the accuracy and practicability of the derived expressions. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:948 / 969
页数:22
相关论文
共 50 条
  • [21] Indirect bridge modal parameters identification with one stationary and one moving sensors and stochastic subspace identification
    Li, Jiantao
    Zhu, Xinqun
    Law, Siu-seong
    Samali, Bijan
    JOURNAL OF SOUND AND VIBRATION, 2019, 446 : 1 - 21
  • [22] Modal Parameter Identification of Recursive Stochastic Subspace Method
    Wu, Haishan
    Huang, Yifeng
    SYMMETRY-BASEL, 2023, 15 (06):
  • [23] An improved stochastic subspace identification for operational modal analysis
    Zhang, Guowen
    Tang, Baoping
    Tang, Guangwu
    MEASUREMENT, 2012, 45 (05) : 1246 - 1256
  • [24] Subspace-based modal identification and uncertainty quantification from video flows
    Merainani, Boualem
    Xiong, Bian
    Baltazart, Vincent
    Doehler, Michael
    Dumoulin, Jean
    Zhang, Qinghua
    JOURNAL OF SOUND AND VIBRATION, 2024, 569
  • [25] Modal identification of arch dams using balanced stochastic subspace identification
    Tarinejad, Reza
    Pourgholi, Mehran
    JOURNAL OF VIBRATION AND CONTROL, 2018, 24 (10) : 2030 - 2044
  • [26] Stochastic subspace identification for operational modal analysis of an arch bridge
    Loh, Chin-Hsiung
    Chen, Ming-Che
    Chao, Shu-Hsien
    SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2012, PTS 1 AND 2, 2012, 8345
  • [27] Stochastic subspace method for structural strain modal parameter identification
    Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
    不详
    Zhendong yu Chongji/Journal of Vibration and Shock, 2008, 27 (06): : 4 - 6
  • [28] Challenges in developing confidence intervals on modal parameters estimated for large civil infrastructure with stochastic subspace identification
    Carden, E. Peter
    Mita, Akira
    STRUCTURAL CONTROL & HEALTH MONITORING, 2011, 18 (01): : 53 - 78
  • [29] Tracking Modal Parameters of Structures Online Using Recursive Stochastic Subspace Identification under Ambient Excitations
    Huang, Shieh-Kung
    Chen, Jin-Quan
    Weng, Yuan-Tao
    Kang, Jae-Do
    BUILDINGS, 2024, 14 (04)
  • [30] Extraction of modal parameters for identification of time-varying systems using data-driven stochastic subspace identification
    Li, Wenchao
    Viet-Hung Vu
    Liu, Zhaoheng
    Thomas, Marc
    Hazel, Bruce
    JOURNAL OF VIBRATION AND CONTROL, 2018, 24 (20) : 4781 - 4796