Deep Learning Models for Classification of Dental Diseases Using Orthopantomography X-ray OPG Images

被引:14
|
作者
Almalki, Yassir Edrees [1 ]
Din, Amsa Imam [2 ]
Ramzan, Muhammad [2 ]
Irfan, Muhammad [3 ]
Aamir, Khalid Mahmood [2 ]
Almalki, Abdullah [4 ]
Alotaibi, Saud [4 ]
Alaglan, Ghada [5 ]
Alshamrani, Hassan A. [6 ]
Rahman, Saifur [3 ]
机构
[1] Najran Univ, Med Coll, Dept Internal Med, Div Radiol, Najran 61441, Saudi Arabia
[2] Univ Sargodha, Dept Comp Sci & Informat Technol, Sargodha 40100, Pakistan
[3] Najran Univ Saudi Arabia, Coll Engn, Elect Engn Dept, Najran 61441, Saudi Arabia
[4] Majmaah Univ, Coll Dent, Dept Prevent Dent Sci, Al Majmaah 11952, Saudi Arabia
[5] Qassim Univ, Coll Dent, Dept Orthodont & Pediat Dent, Buraydah 51452, Saudi Arabia
[6] Najran Univ, Coll Appl Med Sci, Radiol Sci Dept, Najran 61441, Saudi Arabia
关键词
BDR; deep learning; OPG; YOLO; dentistry; annotation; augmentation; medical imaging; TEETH;
D O I
10.3390/s22197370
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The teeth are the most challenging material to work with in the human body. Existing methods for detecting teeth problems are characterised by low efficiency, the complexity of the experiential operation, and a higher level of user intervention. Older oral disease detection approaches were manual, time-consuming, and required a dentist to examine and evaluate the disease. To address these concerns, we propose a novel approach for detecting and classifying the four most common teeth problems: cavities, root canals, dental crowns, and broken-down root canals, based on the deep learning model. In this study, we apply the YOLOv3 deep learning model to develop an automated tool capable of diagnosing and classifying dental abnormalities, such as dental panoramic X-ray images (OPG). Due to the lack of dental disease datasets, we created the Dental X-rays dataset to detect and classify these diseases. The size of datasets used after augmentation was 1200 images. The dataset comprises dental panoramic images with dental disorders such as cavities, root canals, BDR, dental crowns, and so on. The dataset was divided into 70% training and 30% testing images. The trained model YOLOv3 was evaluated on test images after training. The experiments demonstrated that the proposed model achieved 99.33% accuracy and performed better than the existing state-of-the-art models in terms of accuracy and universality if we used our datasets on other models.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Deep Learning Approach for Automatic Classification of X-Ray Images using Convolutional Neural Network
    Mondal, Sushavan
    Agarwal, Krishna
    Rashid, Mamoon
    2019 FIFTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP 2019), 2019, : 326 - 331
  • [32] Eichner classification based on panoramic X-ray images using deep learning: A pilot study
    Otsuka, Yuta
    Indo, Hiroko
    Kawashima, Yusuke
    Tanaka, Tatsuro
    Kono, Hiroshi
    Kikuchi, Masafumi
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2024, 35 (04) : 377 - 386
  • [33] Detection and Classification of Lung Disease Using Deep Learning Architecture from X-ray Images
    Kabiraj, Anwesh
    Meena, Tanushree
    Reddy, Pailla Balakrishna
    Roy, Sudipta
    ADVANCES IN VISUAL COMPUTING, ISVC 2022, PT I, 2022, 13598 : 444 - 455
  • [34] Automated Classification of Lung Injury from X-ray Images using Deep Learning Network
    Le, Huy
    Do, Thanh-Ha
    PROCEEDINGS OF 2022 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2022, : 2029 - 2034
  • [35] Deep Learning Algorithm for COVID-19 Classification Using Chest X-Ray Images
    Sharmila, V. J.
    Florinabel, Jemi D.
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2021, 2021
  • [36] X-ray Scattering Image Classification Using Deep Learning
    Wang, Boyu
    Yager, Kevin
    Yu, Dantong
    Minh Hoai
    2017 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2017), 2017, : 697 - 704
  • [37] Detecting pulmonary diseases using deep features in X-ray images
    Vieira, Pablo
    Sousa, Orrana
    Magalhaes, Deborah
    Rabelo, Ricardo
    Silva, Romuere
    PATTERN RECOGNITION, 2021, 119
  • [38] Diagnosis of common pulmonary diseases in children by X-ray images and deep learning
    Chen, Kai-Chi
    Yu, Hong-Ren
    Chen, Wei-Shiang
    Lin, Wei-Che
    Lee, Yi-Chen
    Chen, Hung-Hsun
    Jiang, Jyun-Hong
    Su, Ting-Yi
    Tsai, Chang-Ku
    Tsai, Ti-An
    Tsai, Chih-Min
    Lu, Henry Horng-Shing
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [39] Diagnosis of common pulmonary diseases in children by X-ray images and deep learning
    Kai-Chi Chen
    Hong-Ren Yu
    Wei-Shiang Chen
    Wei-Che Lin
    Yi-Chen Lee
    Hung-Hsun Chen
    Jyun-Hong Jiang
    Ting-Yi Su
    Chang-Ku Tsai
    Ti-An Tsai
    Chih-Min Tsai
    Henry Horng-Shing Lu
    Scientific Reports, 10
  • [40] Automated estimation of chronological age from panoramic dental X-ray images using deep learning
    Milošević, Denis
    Vodanović, Marin
    Galić, Ivan
    Subašić, Marko
    Expert Systems with Applications, 2022, 189