Analysis of longitudinal ordinal data using semi-parametric mixed model under missingness

被引:0
|
作者
Rana, Subrata [1 ]
机构
[1] Krishnagar Govt Coll, Dept Stat, Krishnagar 741101, Nadia, India
关键词
MCNREM; Missing data; Selection model; Semi-parametric method; Spline; COVARIATE DATA; DATA MECHANISM; RESPONSES; REGRESSION;
D O I
10.1080/03610918.2020.1778031
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In studies related to social or medical sciences, ordinal responses are often recorded repeatedly over time on a subject. A semi-parametric model with spline smoothing has been considered to capture the temporal trend exhibited in the longitudinal data. In addition, information on covariates and/or responses may not be available in one or more visit. A dynamic model for both missing responses and covariates is considered here. The parameters are estimated by adopting MCNREM methodology. A detailed simulation study has been performed to justify the utility of the proposed model. The model is applied on the Alzheimer's Disease Neuroimaging Initiative (ADNI) data.
引用
收藏
页码:5631 / 5642
页数:12
相关论文
共 50 条
  • [41] Asymptotics of estimators in semi-parametric model under NA samples
    Baek, Jong-Il
    Liang, Han-Ying
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2006, 136 (10) : 3362 - 3382
  • [42] Semi-parametric Regression under Model Uncertainty: Economic Applications
    Malsiner-Walli, Gertraud
    Hofmarcher, Paul
    Gruen, Bettina
    OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2019, 81 (05) : 1117 - 1143
  • [43] Semi-parametric Bayesian analysis of binary responses with a continuous covariate subject to non-random missingness
    Poleto, Frederico Z.
    Paulino, Carlos Daniel
    Singer, Julio M.
    Molenberghs, Geert
    STATISTICAL MODELLING, 2015, 15 (01) : 1 - 23
  • [44] Empirical likelihood in a semi-parametric model for missing response data
    Wang, LC
    Veraverbeke, N
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (04) : 625 - 639
  • [45] Using semi-parametric methods in an analysis of earnings mobility
    Ulrick, Shawn W.
    ECONOMETRICS JOURNAL, 2008, 11 (03): : 478 - 498
  • [46] A mixed autoregressive probit model for ordinal longitudinal data
    Varin, Cristiano
    Czado, Claudia
    BIOSTATISTICS, 2010, 11 (01) : 127 - 138
  • [47] Soil analysis using the semi-parametric NAA technique
    Zamboni, C. B.
    Silveira, M. A. G.
    Medina, N. H.
    VII LATIN AMERICAN SYMPOSIUM ON NUCLEAR PHYSICS AND APPLICATIONS, 2007, 947 : 493 - +
  • [48] Semi-parametric analysis of agricultural production under dichotomy of inputs
    Iqbali, Naveed
    Sial, Maqbool Hussain
    AGRICULTURAL ECONOMICS-ZEMEDELSKA EKONOMIKA, 2018, 64 (08): : 378 - 388
  • [49] Empirical likelihood in a semi-parametric model
    Qin, J
    Wong, A
    SCANDINAVIAN JOURNAL OF STATISTICS, 1996, 23 (02) : 209 - 219
  • [50] Regression analysis of competing risks data via semi-parametric additive hazard model
    Zhang, Xu
    Akcin, Haci
    Lim, Hyun J.
    STATISTICAL METHODS AND APPLICATIONS, 2011, 20 (03): : 357 - 381