MULTI-OBJECT TRACKING VIA HIGH ACCURACY OPTICAL FLOW AND FINITE SET STATISTICS

被引:0
|
作者
Schikora, Marek [1 ]
Koch, Wolfgang [1 ]
Cremers, Daniel [2 ]
机构
[1] Fraunhofer FKIE, Dep Sensor Data & Informat Fus, Wachtberg, Germany
[2] Tech Univ Munich, Comp Sci Dept, D-80290 Munich, Germany
关键词
multi-object tracking; PHD-filter; optical flow; sequential Monte Carlo;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this work we present a novel method for tracking an unknown number of objects with a single camera system in real-time. The proposed algorithm is based on high-accuracy optical flow and finite set statistics. In this framework the target state is treated as a random vector and the number of possible objects as a random number, which has to be estimated correctly. We are able to deal with false alarms, clutter and object spawning. Since possible objects can appear or disappear in the scene we propose a probability model for these events, in order to obtain stable results in the case of missing detections. Additionally, we show how track labeling, based on color and state information, can improve the results. Since the method partly relies on color information, it can handle partial occlusion and is invariant to rotation and scaling. We verify the theoretical results on various scenes.
引用
收藏
页码:1409 / 1412
页数:4
相关论文
共 50 条
  • [21] Multi-object Tracking In The Overlapping Area Based on Optical Flows
    Wang, Ningning
    Luo, Mingli
    Luo, Xiaohui
    PROCEEDINGS OF THE 2015 INTERNATIONAL INDUSTRIAL INFORMATICS AND COMPUTER ENGINEERING CONFERENCE, 2015, : 2113 - 2119
  • [22] Effective Multi-Object Tracking via Global Object Models and Object Constraint Learning
    Yoo, Yong-Sang
    Lee, Seong-Ho
    Bae, Seung-Hwan
    SENSORS, 2022, 22 (20)
  • [23] Enhancing the association in multi-object tracking via neighbor graph
    Liang, Tianyi
    Lan, Long
    Zhang, Xiang
    Peng, Xindong
    Luo, Zhigang
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2021, 36 (11) : 6713 - 6730
  • [24] Learning of Global Objective for Network Flow in Multi-Object Tracking
    Li, Shuai
    Kong, Yu
    Rezatofighi, Hamid
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 8845 - 8855
  • [25] Multi-Object Tracking and Segmentation Via Neural Message Passing
    Guillem Brasó
    Orcun Cetintas
    Laura Leal-Taixé
    International Journal of Computer Vision, 2022, 130 : 3035 - 3053
  • [26] Structure and Appearance Preserving Network Flow for Multi-object Tracking
    Pu, Shi
    Zhang, Honggang
    Zhao, Kaili
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 1804 - 1808
  • [27] Multi-Object Tracking and Segmentation Via Neural Message Passing
    Braso, Guillem
    Cetintas, Orcun
    Leal-Taixe, Laura
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (12) : 3035 - 3053
  • [28] A data set for evaluating the performance of multi-class multi-object video tracking
    Chakraborty, Avishek
    Stamatescu, Victor
    Wong, Sebastien C.
    Wigley, Grant
    Kearney, David
    AUTOMATIC TARGET RECOGNITION XXVII, 2017, 10202
  • [29] Heterogeneous Multi-Sensor Fusion With Random Finite Set Multi-Object Densities
    Yi, Wei
    Chai, Lei
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 3399 - 3414
  • [30] MULTI-OBJECT TRACKING AS ATTENTION MECHANISM
    Fukui, Hiroshi
    Miyagawa, Taiki
    Morishita, Yusuke
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 505 - 509