Uniqueness of recovering the parameters of sectional operators on simple complex Lie algebras

被引:1
|
作者
Konyaev, A. Yu [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
simple complex Lie algebra; sectional operator; caustic; semi-simple element of a Poisson-Lie algebra; Mishchenko-Fomenko algebra; Killing form; Cartan subalgebra; root system; Weyl basis; Jacobi identity;
D O I
10.1134/S0001434611090057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By a sectional operator on a simple complex Lie algebra g we mean a self-adjoint operator I center dot: g -> g satisfying the identity [I center dot x, a] = [x, b] for some chosen elements a, b a g, a not equal 0. The problem concerning the uniqueness of recovering the parameters of a given specific operator arises in many areas of geometry. The main result of the paper is as follows: if a and b are not proportional and a is regular and semisimple, then every pair of parameters p, q of the sectional operator is obtained from the pair a, b by multiplying the pair by a nonzero scalar, i.e., the parameters are recovered uniquely in a sense. It follows that the Mishchenko-Fomenko subalgebras for regular semisimple elements of the Poisson-Lie algebra coincide for proportional values of the parameters only.
引用
收藏
页码:365 / 372
页数:8
相关论文
共 50 条
  • [31] ON LIE-ALGEBRAS OF OPERATORS
    BRATTELI, O
    ELLIOTT, GA
    GOODMAN, FM
    JORGENSEN, PET
    JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 86 (02) : 341 - 359
  • [32] Bivariate polynomial mappings associated with simple complex Lie algebras
    Kucuksakalli, Omer
    JOURNAL OF NUMBER THEORY, 2016, 168 : 433 - 451
  • [33] Biderivations of finite-dimensional complex simple Lie algebras
    Tang, Xiaomin
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (02): : 250 - 259
  • [34] RIGIDITY OF CURRENT LIE-ALGEBRAS OF COMPLEX SIMPLE TYPE
    LECOMTE, PBA
    ROGER, C
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1988, 37 : 232 - 240
  • [35] DESCRIPTION OF A CLASS OF PROJECTION OPERATORS FOR SEMISIMPLE COMPLEX LIE-ALGEBRAS
    ASHEROVA, RM
    SMIRNOV, YE
    TOLSTOI, VN
    MATHEMATICAL NOTES, 1979, 26 (1-2) : 499 - 504
  • [36] SIMPLE SINGULARITIES AND SIMPLE LIE ALGEBRAS
    Le Dung Trang
    Tosun, Meral
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2011, 2 (01): : 97 - 111
  • [37] SIMPLE GROUPS AND SIMPLE LIE ALGEBRAS
    CARTER, RW
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1965, 40 (158P): : 193 - &
  • [38] Twisted Rota-Baxter operators and Reynolds operators on Lie algebras and NS-Lie algebras
    Das, Apurba
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (09)
  • [39] Equations in simple Lie algebras
    Bandman, Tatiana
    Gordeev, Nikolai
    Kunyavskii, Boris
    Plotkin, Eugene
    JOURNAL OF ALGEBRA, 2012, 355 (01) : 67 - 79
  • [40] Simple superelliptic Lie algebras
    Cox, Ben
    Guo, Xiangqian
    Lu, Rencai
    Zhao, Kaiming
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (03)