Embedded Mixed-Integer Quadratic Optimization using Accelerated Dual Gradient Projection

被引:22
|
作者
Naik, Vihangkumar V. [1 ]
Bemporad, Alberto [1 ]
机构
[1] IMT Sch Adv Studies Lucca, Lucca, Italy
来源
IFAC PAPERSONLINE | 2017年 / 50卷 / 01期
关键词
Mixed-integer quadratic programming; quadratic programming; Accelerated gradient projection; model predictive control; hybrid systems; ALGORITHM;
D O I
10.1016/j.ifacol.2017.08.2235
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The execution of a hybrid model predictive controller (MPC) on an embedded platform requires solving a Mixed-Integer Quadratic Programming (MIQP) in real time. The MIQP problem is NP-hard, which poses a major challenge in an environment where computational and memory resources are limited. To address this issue, we propose the use of accelerated dual gradient projection (GPAD) to find both the exact and an approximate solution of the MIQP problem. In particular, an existing GPAD algorithm is specialized to solve the relaxed Quadratic Programming (QP) subproblems that arise in a Branch and Bound (B&B) method for solving the MIQP to optimality. Furthermore, we present an approach to find a suboptimal integer feasible solution of a MIQP problem without using B&B. The GPAD algorithm is very simple to code and requires only basic arithmetic operations which makes it well suited for an embedded implementation. The performance of the proposed approaches is comparable with the state of the art MIQP solvers for small-scale problems. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:10723 / 10728
页数:6
相关论文
共 50 条
  • [1] Embedded Mixed-Integer Quadratic Optimization Using the OSQP Solver
    Stellato, Bartolomeo
    Naik, Vihangkumar V.
    Bemporad, Alberto
    Goulart, Paul
    Boyd, Stephen
    2018 EUROPEAN CONTROL CONFERENCE (ECC), 2018, : 1536 - 1541
  • [2] Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded
    Mistry, Miten
    Letsios, Dimitrios
    Krennrich, Gerhard
    Lee, Robert M.
    Misener, Ruth
    INFORMS JOURNAL ON COMPUTING, 2021, 33 (03) : 1103 - 1119
  • [3] Using dual relaxations in multiobjective mixed-integer convex quadratic programming
    De Santis, Marianna
    Eichfelder, Gabriele
    Patria, Daniele
    Warnow, Leo
    JOURNAL OF GLOBAL OPTIMIZATION, 2024,
  • [4] miqoGraph: fitting admixture graphs using mixed-integer quadratic optimization
    Yan, Julia
    Patterson, Nick
    Narasimhan, Vagheesh M.
    BIOINFORMATICS, 2021, 37 (16) : 2488 - 2490
  • [5] Mixed-integer quadratic optimization for waste flow quantification
    Somplak, R.
    Smejkalova, V
    Kudela, J.
    OPTIMIZATION AND ENGINEERING, 2022, 23 (04) : 2177 - 2201
  • [6] Compact mixed-integer programming formulations in quadratic optimization
    Benjamin Beach
    Robert Hildebrand
    Joey Huchette
    Journal of Global Optimization, 2022, 84 : 869 - 912
  • [7] Compact mixed-integer programming formulations in quadratic optimization
    Beach, Benjamin
    Hildebrand, Robert
    Huchette, Joey
    JOURNAL OF GLOBAL OPTIMIZATION, 2022, 84 (04) : 869 - 912
  • [8] A simple effective heuristic for embedded mixed-integer quadratic programming
    Takapoui, Reza
    Moehle, Nicholas
    Boyd, Stephen
    Bemporad, Alberto
    INTERNATIONAL JOURNAL OF CONTROL, 2020, 93 (01) : 2 - 12
  • [9] Mixed-integer quadratic optimization for waste flow quantification
    R. Šomplák
    V. Smejkalová
    J. Kůdela
    Optimization and Engineering, 2022, 23 : 2177 - 2201
  • [10] A Simple Effective Heuristic for Embedded Mixed-Integer Quadratic Programming
    Takapoui, Reza
    Moehle, Nicholas
    Boyd, Stephen
    Bemporad, Alberto
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 5619 - 5625