Liquid-like thermal conduction in intercalated layered crystalline solids

被引:143
|
作者
Li, B. [1 ]
Wang, H. [2 ]
Kawakita, Y. [1 ]
Zhang, Q. [3 ,4 ]
Feygenson, M. [5 ]
Yu, H. L. [6 ]
Wu, D. [7 ]
Ohara, K. [8 ]
Kikuchi, T. [1 ]
Shibata, K. [1 ]
Yamada, T. [9 ]
Ning, X. K. [10 ]
Chen, Y. [6 ]
He, J. Q. [7 ]
Vaknin, D. [3 ,4 ]
Wu, R. Q. [2 ]
Nakajima, K. [1 ]
Kanatzidis, M. G. [11 ]
机构
[1] Japan Atom Energy Agcy, J PARC Ctr, Tokai, Ibaraki, Japan
[2] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA
[3] Iowa State Univ, Ames Lab, Ames, IA USA
[4] Iowa State Univ, Dept Phys & Astron, Ames, IA USA
[5] Forschungszentrum Julich, Julich Ctr Neutron Sci, Julich, Germany
[6] Univ Hong Kong, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
[7] Southern Univ Sci & Technol SUSTech, Dept Phys, Shenzhen, Peoples R China
[8] Japan Synchrotron Radiat Res Inst, SPring 8, Sayo, Hyogo, Japan
[9] CROSS, Neutron Sci & Technol Ctr, Tokai, Ibaraki, Japan
[10] Hebei Univ, Coll Phys Sci & Technol, Hebei Key Lab Opt Elect Informat & Mat, Baoding, Peoples R China
[11] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
关键词
ORDER-DISORDER TRANSITION; AUGMENTED-WAVE METHOD; AGCRSE2; THERMOELECTRICS; SCATTERING; DYNAMICS; MODES; SNSE;
D O I
10.1038/s41563-017-0004-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As a generic property, all substances transfer heat through microscopic collisions of constituent particles1. A solid conducts heat through both transverse and longitudinal acoustic phonons, but a liquid employs only longitudinal vibrations2,3. As a result, a solid is usually thermally more conductive than a liquid. In canonical viewpoints, such a difference also serves as the dynamic signature distinguishing a solid from a liquid. Here, we report liquid-like thermal conduction observed in the crystalline AgCrSe2. The transverse acoustic phonons are completely suppressed by the ultrafast dynamic disorder while the longitudinal acoustic phonons are strongly scattered but survive, and are thus responsible for the intrinsically ultralow thermal conductivity. This scenario is applicable to a wide variety of layered compounds with heavy intercalants in the van der Waals gaps, manifesting a broad implication on suppressing thermal conduction. These microscopic insights might reshape the fundamental understanding on thermal transport properties of matter and open up a general opportunity to optimize performances of thermoelectrics.
引用
收藏
页码:226 / +
页数:6
相关论文
共 50 条
  • [22] OBSERVATION OF A CONFORMATIONALLY LIQUID-LIKE COMPONENT IN CRYSTALLINE POLYETHYLENE BY RAMAN-SPECTROSCOPY
    SNYDER, RG
    SCHLOTTER, NE
    ALAMO, R
    MANDELKERN, L
    MACROMOLECULES, 1986, 19 (03) : 621 - 626
  • [23] Omniphobic liquid-like surfaces
    Liwei Chen
    Shilin Huang
    Robin H. A. Ras
    Xuelin Tian
    Nature Reviews Chemistry, 2023, 7 : 123 - 137
  • [24] Omniphobic liquid-like surfaces
    Chen, Liwei
    Huang, Shilin
    Ras, Robin H. A.
    Tian, Xuelin
    NATURE REVIEWS CHEMISTRY, 2023, 7 (02) : 123 - 137
  • [25] Liquid-like behavior of chromatin
    Maeshima, Kazuhiro
    Ide, Satoru
    Hibino, Kayo
    Sasai, Masaki
    CURRENT OPINION IN GENETICS & DEVELOPMENT, 2016, 37 : 36 - 45
  • [26] The Liquid-Like Structure of Elastin
    Rauscher, Sarah
    Pomes, Regis
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 369A - 369A
  • [27] Liquid-like nanoparticles and their composites
    Dong, Lijie
    Feng, Qisong
    Li, Qi
    Xiong, Chuanxi
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [28] 3D In Vitro Platform for Cell and Explant Culture in Liquid-like Solids
    Nguyen, Duy T.
    Famiglietti, Jack E.
    Smolchek, Ryan A.
    Dupee, Zadia
    Diodati, Nickolas
    Pedro, Diego, I
    Uruena, Juan M.
    Schaller, Matthew A.
    Sawyer, W. Gregory
    CELLS, 2022, 11 (06)
  • [29] Glasses with liquid-like surfaces
    Richard A.L. Jones
    Nature Materials, 2003, 2 : 645 - 646
  • [30] Observation of the coexistence of crystalline and liquid-like states in krypton-doped argon clusters
    Danil'chenko, A. G.
    Kovalenko, S. I.
    Samovarov, V. N.
    LOW TEMPERATURE PHYSICS, 2008, 34 (12) : 1030 - 1032