The use of CO2 flux time series for parameter and carbon stock estimation in carbon cycle research

被引:26
|
作者
Hill, Timothy Charles [1 ,2 ]
Ryan, Edmund [3 ,4 ]
Williams, Mathew [1 ,2 ]
机构
[1] Univ Edinburgh, Sch Geosci, Edinburgh EH9 3JN, Midlothian, Scotland
[2] Univ Edinburgh, NERC Natl Ctr Earth Observat, Edinburgh EH9 3JN, Midlothian, Scotland
[3] Univ Sheffield, Sch Math & Stat, Sheffield, S Yorkshire, England
[4] Univ Sheffield, NERC Natl Ctr Earth Observat, Sheffield, S Yorkshire, England
基金
英国自然环境研究理事会;
关键词
eddy correlation; EnKF; Markov Chain; MCMC; Metropolis; Metropolis hastings; MH; model-data fusion; Monte-Carlo; EDDY COVARIANCE MEASUREMENTS; TERRESTRIAL ECOSYSTEM MODEL; FOREST; EXCHANGE; UNCERTAINTY; INVERSION; DIOXIDE; ERRORS;
D O I
10.1111/j.1365-2486.2011.02511.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Data assimilation (DA) is increasingly being employed to estimate the parameters and states of terrestrial ecosystem models from eddy covariance measurements of net carbon (C) fluxes. The length of the observation time series used varies for each study. The impact of these differences has not been quantified explicitly. Therefore, in this study, we investigate the importance of the time series length relative to observation noise and data gaps. Different length synthetic time series are used to determine the parameter and C stocks of a simple ecosystem C model. Two commonly used DA schemes are tested: the sequential Ensemble Kalman Filter (EnKF) and a batch Metropolis Markov chain Monte Carlo algorithm. Longer time series improve both the parameter and C pool estimates of the EnKF, while adversely affecting those of the Metropolis algorithm. For both DA approaches, the length of the time series has more influence on the parameter and pool estimates than the level of random noise or amount of data. In this study, the EnKF provides more robust parameter and C pool estimates than the Metropolis algorithm. Optimized parameters and states are often used as the basis for forecasting future responses. Despite having better parameter and C pool estimates, EnKF forecasts estimates have much larger uncertainties than the Metropolis algorithm forecast estimates. Finally, we suggest that the structure of simple box models, as used in this study, introduces a large degree of equifinality into DA. Neither DA scheme correctly accounts for the equifinality, but our results suggest that it is particularly problematic for the batch Metropolis algorithm.
引用
收藏
页码:179 / 193
页数:15
相关论文
共 50 条
  • [21] THE CARBON-CYCLE - SOURCES AND SINKS OF ATMOSPHERIC CO2
    KOHLMAIER, GH
    FISCHBACH, U
    KRATZ, G
    BROHL, H
    SCHUNCK, W
    EXPERIENTIA, 1980, 36 (07): : 769 - 776
  • [22] CARBON-CYCLE - ARCTIC CHILL FOR CO2 UPTAKE
    FIELD, CB
    NATURE, 1994, 371 (6497) : 472 - 473
  • [23] Comment on "⁢Scrutinizing the carbon cycle and CO2 residence time in the atmosphere⁢" by H. Harde
    Koehler, Peter
    Hauck, Judith
    Voelker, Christoph
    Wolf-Gladrow, Dieter A.
    Butzin, Martin
    Halpern, Joshua B.
    Rice, Ken
    Zeebe, Richard E.
    GLOBAL AND PLANETARY CHANGE, 2018, 164 : 67 - 71
  • [24] Reducing errors on estimates of the carbon uptake period based on time series of atmospheric CO2
    Kariyathan, Theertha
    Bastos, Ana
    Marshall, Julia
    Peters, Wouter
    Tans, Pieter
    Reichstein, Markus
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2023, 16 (12) : 3299 - 3312
  • [25] The carbon footprint of the carbon feedstock CO2
    Mueller, Leonard Jan
    Kaetelhoen, Arne
    Bringezu, Stefan
    McCoy, Sean
    Suh, Sangwon
    Edwards, Robert
    Sick, Volker
    Kaiser, Simon
    Cuellar-Franca, Rosa
    El Khamlichi, Aicha
    Lee, Jay H.
    von der Assen, Niklas
    Bardow, Andre
    ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (09) : 2979 - 2992
  • [26] CO2, CARBON-CYCLE AND CLIMATE INTERACTIONS .1. GLOBAL CARBON EVALUATION
    GRASSL, H
    MAIERREIMER, E
    DEGENS, ET
    KEMPE, S
    SPITZY, A
    NATURWISSENSCHAFTEN, 1984, 71 (03) : 129 - 136
  • [27] Estimation of groundwater residence time using radiocarbon and stable carbon isotope ratio in dissolved inorganic carbon and soil CO2
    Agrawal, Rahul Kumar
    Mohanty, Ranjan Kumar
    Rathi, Ajayeta
    Mehta, Shreya
    Yadava, M. G.
    Kumar, Sanjeev
    Laskar, Amzad H.
    RADIOCARBON, 2024, 66 (02) : 249 - 266
  • [28] When Carbon Meets CO2: Functional Carbon Nanostructures for CO2 Utilization
    Liu, Lei
    Ke, Chang-Ce
    Ma, Tian-Yi
    Zhu, Yun-Pei
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2019, 19 (06) : 3148 - 3161
  • [29] CARBON OXIDES - CO AND CO2
    YAWS, CL
    LI, KY
    KUO, CH
    CHEMICAL ENGINEERING, 1974, 81 (20) : 115 - 122
  • [30] Rock 'n' use of CO2: carbon footprint of carbon capture and utilization by mineralization
    Ostovari, Hesam
    Sternberg, Andre
    Bardow, Andre
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (09): : 4482 - 4496