Enhance Prototypical Network with Text Descriptions for Few-shot Relation Classification

被引:33
|
作者
Yang, Kaijia [1 ]
Zheng, Nantao [1 ]
Dai, Xinyu [1 ]
He, Liang [1 ]
Huang, Shujian [1 ]
Chen, Jiajun [1 ]
机构
[1] Nanjing Univ, Natl Key Lab Novel Software Technol, Nanjing, Peoples R China
基金
国家重点研发计划; 美国国家科学基金会;
关键词
Relation Extraction; Few Shot; Text Description;
D O I
10.1145/3340531.3412153
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently few-shot relation classification has drawn much attention. It devotes to addressing the long-tail relation problem by recognizing the relations from few instances. The existing metric learning methods aim to learn the prototype of classes and make prediction according to distances between query and prototypes. However, it is likely to make unreliable predictions due to the text diversity. It is intuitive that the text descriptions of relation and entity can provide auxiliary support evidence for relation classification. In this paper, we propose TD-Proto, which enhances prototypical network with relation and entity descriptions. We design a collaborative attention module to extract beneficial and instructional information of sentence and entity respectively. A gate mechanism is proposed to fuse both information dynamically so as to obtain a knowledge-aware instance. Experimental results demonstrate that our method achieves excellent performance.
引用
下载
收藏
页码:2273 / 2276
页数:4
相关论文
共 50 条
  • [31] Mutual Learning Prototype Network for Few-Shot Text Classification
    Liu, Jun
    Qin, Xiaorui
    Tao, Jian
    Dong, Hongfei
    Li, Xiaoxu
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2024, 47 (03): : 30 - 35
  • [32] Fabric defect classification using prototypical network of few-shot learning algorithm
    Zhan, Zhu
    Zhou, Jinfeng
    Xu, Bugao
    COMPUTERS IN INDUSTRY, 2022, 138
  • [33] Improved prototypical network for active few-shot learning
    Wu, Yaqiang
    Li, Yifei
    Zhao, Tianzhe
    Zhang, Lingling
    Wei, Bifan
    Liu, Jun
    Zheng, Qinghua
    PATTERN RECOGNITION LETTERS, 2023, 172 : 188 - 194
  • [34] Few-shot relation classification by context attention-based prototypical networks with BERT
    Bei Hui
    Liang Liu
    Jia Chen
    Xue Zhou
    Yuhui Nian
    EURASIP Journal on Wireless Communications and Networking, 2020
  • [35] Hybrid Attention-Based Prototypical Networks for Noisy Few-Shot Relation Classification
    Gao, Tianyu
    Han, Xu
    Liu, Zhiyuan
    Sun, Maosong
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 6407 - 6414
  • [36] Few-shot relation classification by context attention-based prototypical networks with BERT
    Hui, Bei
    Liu, Liang
    Chen, Jia
    Zhou, Xue
    Nian, Yuhui
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2020, 2020 (01)
  • [37] HFGNN-Proto: Hesitant Fuzzy Graph Neural Network-Based Prototypical Network for Few-Shot Text Classification
    Guo, Xinyu
    Tian, Bingjie
    Tian, Xuedong
    ELECTRONICS, 2022, 11 (15)
  • [38] Survey of Few-Shot Relation Classification
    Liu, Tao
    Ke, Zunwang
    Wushour
    Computer Engineering and Applications, 2023, 59 (09) : 1 - 2
  • [39] ReNAP: Relation network with adaptiveprototypical learning for few-shot classification
    Li, Xiaoxu
    Li, Yalan
    Zheng, Yixiao
    Zhu, Rui
    Ma, Zhanyu
    Xue, Jing-Hao
    Cao, Jie
    NEUROCOMPUTING, 2023, 520 : 356 - 364
  • [40] Total Relation Network with Attention for Few-Shot Image Classification
    Li X.-X.
    Liu Z.-Y.
    Wu J.-J.
    Cao J.
    Ma Z.-Y.
    Jisuanji Xuebao/Chinese Journal of Computers, 2023, 46 (02): : 371 - 384