Iron single-atom anchored N-doped carbon as a 'laccase-like' nanozyme for the degradation and detection of phenolic pollutants and adrenaline

被引:94
|
作者
Lin, Yamei [1 ]
Wang, Fei [1 ]
Yu, Jie [1 ]
Zhang, Xing [1 ]
Lu, Guo-Ping [2 ]
机构
[1] Nanjing Normal Univ, Sch Food Sci & Pharmaceut Engn, Nanjing 210023, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Chem & Chem Engn, 200 Xiao Ling Wei St, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
laccase mimic; iron single-atom catalyst; nanozyme; N-doped carbon; phenolic compounds; PEROXIDASE-LIKE ACTIVITY; COLORIMETRIC DETECTION; MESOPOROUS CARBON; ELECTRON-TRANSFER; RATIONAL DESIGN; OXIDATION; REDUCTION; MECHANISM; WATER; IDENTIFICATION;
D O I
10.1016/j.jhazmat.2021.127763
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
To solve the inherent defects of laccase, the first iron single-atom anchored N-doped carbon material (Fe1@CN20) as a laccase mimic was disclosed. The FeN4 structure of this material can well mimic the catalytic activity of laccase. Although Fe1@CN-20 has a lower metal content (2.9 wt%) than any previously reported laccase mimics, it exhibits kinetic constants comparable to those of laccase, as its Km (Michaelis constant) and Vmax (maximum rate) are 0.070 mM and 2.25 mu M/min respectively, which are similar to those of laccase (0.078 mM, 2.49 mu M/ min). This catalyst displays excellent stability even under extreme pH (2-9), high temperature (100 degrees C), strong ionic strength (500 mM of NaCl), high ethanol concentration (volume ratio 40%) and long storage time (2 months). Additionally, it can be reused for at least 7 times with only a slight loss in activity. Therefore, this material has a much lower price and better stability and recyclability than laccase, which has been applied in the detection and degradation of a series of phenolic compounds. In the detection of adrenaline, Fe1@CN-20 achieved a detection limit of 1.3 mu M, indicating it is more sensitive than laccase (3.9 mu M).
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Hollow N-doped carbon spheres with anchored single-atom Fe sites for efficient electrocatalytic oxygen reduction
    Wang, Min-Min
    Feng, Chao
    Liu, Yun-Qi
    Pan, Yuan
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2023, 51 (05): : 581 - 588
  • [22] Constructing single-atom Ni on N-doped carbon via chelation-anchored strategy for the hydrogenolysis of lignin
    Li, Tianjin
    Chen, Bo
    Cao, Meifang
    Ouyang, Xinping
    Qiu, Xueqing
    Li, Changzhi
    AICHE JOURNAL, 2023, 69 (02)
  • [23] Nucleobase-modulated copper nanomaterials with laccase-like activity for high-performance degradation and detection of phenolic pollutants
    Yang, Tao
    Li, Yuanyuan
    Liu, Gonghao
    Tong, Jiajun
    Zhang, Peng
    Feng, Bo
    Tian, Ke
    Liu, Xiaofeng
    Qing, Taiping
    JOURNAL OF HAZARDOUS MATERIALS, 2024, 477
  • [24] Single Mn atom anchored on N-doped porous carbon as highly efficient Fenton-like catalyst for the degradation of organic contaminants
    Yang, Jingren
    Zeng, Deqian
    Zhang, Qinggang
    Cui, Ruofan
    Hassan, Muhammad
    Dong, Lingqian
    Li, Jun
    He, Yiliang
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 279
  • [25] Highly efficient adsorption and degradation of zearalenone by Fe single-atom N-doped porous carbon: Degradation mechanisms and pathways
    Zhao, Zhilei
    Li, Yu
    Zhai, Wenlei
    Wang, Liuqing
    Li, Qianqian
    Wang, Yudan
    Wang, Meng
    MATERIALS TODAY COMMUNICATIONS, 2025, 43
  • [26] Single-atom palladium anchored N-doped carbon towards oxygen electrocatalysis for rechargeable Zn-air batteries
    Han, Chunxiao
    Yi, Wenwen
    Feng, Sisi
    Li, Zhongping
    Song, Haiou
    DALTON TRANSACTIONS, 2022, 51 (32) : 12314 - 12323
  • [27] Single-atom Fe nanozymes with excellent oxidase-like and laccase-like activity for colorimetric detection of ascorbic acid and hydroquinone
    Chu, Shushu
    Xia, Mingyuan
    Xu, Peng
    Lin, Dalei
    Jiang, Yuanyuan
    Lu, Yizhong
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2024, 416 (27) : 6067 - 6077
  • [28] Mo Single-Atom Nanozyme Anchored to the 2D N-Doped Carbon Film: Catalytic Mechanism, Visual Monitoring of Choline, and Evaluation of Intracellular ROS Generation
    Sun, Qijun
    Xu, Xiaoyu
    Liu, Song
    Wu, Xinzhao
    Yin, Chenhui
    Wu, Meng
    Chen, Yuxue
    Niu, Na
    Chen, Ligang
    Bai, Fuquan
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (30) : 36124 - 36134
  • [29] Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation
    Yu Xiong
    Juncai Dong
    Zheng-Qing Huang
    Pingyu Xin
    Wenxing Chen
    Yu Wang
    Zhi Li
    Zhao Jin
    Wei Xing
    Zhongbin Zhuang
    Jinyu Ye
    Xing Wei
    Rui Cao
    Lin Gu
    Shigang Sun
    Lin Zhuang
    Xiaoqing Chen
    Hua Yang
    Chen Chen
    Qing Peng
    Chun-Ran Chang
    Dingsheng Wang
    Yadong Li
    Nature Nanotechnology, 2020, 15 : 390 - 397
  • [30] Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation
    Xiong, Yu
    Dong, Juncai
    Huang, Zheng-Qing
    Xin, Pingyu
    Chen, Wenxing
    Wang, Yu
    Li, Zhi
    Jin, Zhao
    Xing, Wei
    Zhuang, Zhongbin
    Ye, Jinyu
    Wei, Xing
    Cao, Rui
    Gu, Lin
    Sun, Shigang
    Zhuang, Lin
    Chen, Xiaoqing
    Yang, Hua
    Chen, Chen
    Peng, Qing
    Chang, Chun-Ran
    Wang, Dingsheng
    Li, Yadong
    NATURE NANOTECHNOLOGY, 2020, 15 (05) : 390 - +