Estimating phase behavior of the asphaltene precipitation by GA-ANFIS approach

被引:2
|
作者
Chen, Mengxiang [1 ]
Sasanipour, Jafar [2 ]
Mousavy, Sayyed Ali Kiaian [3 ]
Khajeh, Ebrahim [4 ]
Kamyab, Majid [5 ]
机构
[1] Guangdong Polytech Environm Protect Engn, Dept Mech & Elect Engn, Foshan 528216, Peoples R China
[2] Petr Univ Technol, Ahwaz Fac Petr Engn, Dept Gas Engn, Ahvaz, Iran
[3] Sharif Univ Technol, Dept Comp Engn, Tehran, Iran
[4] Univ Teknol Malaysia, Fac Comp, Skudai, Johor, Malaysia
[5] Iran Univ Sci & Technol, Sch Chem Engn, Comp Aided Proc Engn Lab Cape, Tehran, Iran
关键词
ANFIS; asphaltene; dilution ratio; heavy n-alkane; temperature; SCALING EQUATION; MOLECULAR-WEIGHT; OIL; HYDROCARBONS; TEMPERATURE; PREDICTION; SOLUBILITY; ONSET; GASES;
D O I
10.1080/10916466.2018.1493503
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study implements an adaptive neuro-fuzzy inference system (ANFIS) approach to predict the precipitation amount of the asphaltene using temperature (T), dilution ratio (R-v), and molecular weight of different n-alkanes. Results are then evaluated using graphical and statistical error analysis methods, confirming the model's great ability for appropriate prediction of the precipitation amount. Mean squared error and determination coefficient (R-2) values of 0.036 and 0.995, respectively are obtained for the proposed ANFIS model. Results are then compared to those from previously reported correlations revealing the better performance of the proposed model.
引用
收藏
页码:1582 / 1588
页数:7
相关论文
共 50 条
  • [21] Element yield rate prediction in ladle furnace based on improved GA-ANFIS
    徐喆
    毛志忠
    Journal of Central South University, 2012, 19 (09) : 2520 - 2527
  • [22] Prediction of Heart Attack Risk Using GA-ANFIS Expert System Prototype
    Begic Fazlic, Lejla
    Avdagic, Aja
    Besic, Ingmar
    PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON WEARABLE MICRO AND NANO TECHNOLOGIES FOR PERSONALIZED HEALTH (PHEALTH 2015), 2015, 211 : 292 - 294
  • [23] Developing Thermodynamic Micellization Approach to Model Asphaltene Precipitation Behavior
    Ashoori, Siavash
    Shahsavani, Behnam
    Ahmadi, Mohammad Ali
    Rezaei, Ahmad
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2014, 35 (09) : 1325 - 1338
  • [24] Modeling of precipitated asphaltene using the ANFIS approach
    Taleghani, Mohammad Soodbakhsh
    Dehaghani, Amir Hossein Saeedi
    Shafiee, Mohammad Ebrahim
    PETROLEUM SCIENCE AND TECHNOLOGY, 2017, 35 (03) : 235 - 241
  • [25] Short-Term Wind Power Forecasting Using a Double-Stage Hierarchical Hybrid GA-ANFIS Approach
    Eseye, Abinet Tesfaye
    Zhang, Jianhua
    Zheng, Dehua
    Li, Han
    Gan Jingfu
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYSIS (ICCCBDA 2017), 2017, : 499 - 503
  • [26] Modeling and control of a photovoltaic-wind hybrid microgrid system using GA-ANFIS
    Aloo, Linus A.
    Kihato, Peter K.
    Kamau, Stanley I.
    Orenge, Roy S.
    HELIYON, 2023, 9 (04)
  • [27] Modeling of a Commercial BLDC motor and control using GA-ANFIS tuned PID Controller
    Dasari, Murali
    Reddy, A. Srinivasula
    Kumar, M. Vijaya
    2017 INTERNATIONAL CONFERENCE ON INNOVATIVE RESEARCH IN ELECTRICAL SCIENCES (IICIRES2017), 2017,
  • [28] A monodisperse thermodynamic model for estimating asphaltene precipitation
    Mohammadi, Amir H.
    Richon, Dominique
    AICHE JOURNAL, 2007, 53 (11) : 2940 - 2947
  • [29] 基于GA-ANFIS的油气储层地震预测方法及应用
    李勇
    李琼
    李正文
    邵泽辉
    天然气工业, 2006, (05) : 40 - 42+17+16
  • [30] Improved Pullulan Production and Process Optimization Using Novel GA-ANN and GA-ANFIS Hybrid Statistical Tools
    Badhwar, Parul
    Kumar, Ashwani
    Yadav, Ankush
    Kumar, Punit
    Siwach, Ritu
    Chhabra, Deepak
    Dubey, Kashyap Kumar
    BIOMOLECULES, 2020, 10 (01)