Estimating phase behavior of the asphaltene precipitation by GA-ANFIS approach

被引:2
|
作者
Chen, Mengxiang [1 ]
Sasanipour, Jafar [2 ]
Mousavy, Sayyed Ali Kiaian [3 ]
Khajeh, Ebrahim [4 ]
Kamyab, Majid [5 ]
机构
[1] Guangdong Polytech Environm Protect Engn, Dept Mech & Elect Engn, Foshan 528216, Peoples R China
[2] Petr Univ Technol, Ahwaz Fac Petr Engn, Dept Gas Engn, Ahvaz, Iran
[3] Sharif Univ Technol, Dept Comp Engn, Tehran, Iran
[4] Univ Teknol Malaysia, Fac Comp, Skudai, Johor, Malaysia
[5] Iran Univ Sci & Technol, Sch Chem Engn, Comp Aided Proc Engn Lab Cape, Tehran, Iran
关键词
ANFIS; asphaltene; dilution ratio; heavy n-alkane; temperature; SCALING EQUATION; MOLECULAR-WEIGHT; OIL; HYDROCARBONS; TEMPERATURE; PREDICTION; SOLUBILITY; ONSET; GASES;
D O I
10.1080/10916466.2018.1493503
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study implements an adaptive neuro-fuzzy inference system (ANFIS) approach to predict the precipitation amount of the asphaltene using temperature (T), dilution ratio (R-v), and molecular weight of different n-alkanes. Results are then evaluated using graphical and statistical error analysis methods, confirming the model's great ability for appropriate prediction of the precipitation amount. Mean squared error and determination coefficient (R-2) values of 0.036 and 0.995, respectively are obtained for the proposed ANFIS model. Results are then compared to those from previously reported correlations revealing the better performance of the proposed model.
引用
收藏
页码:1582 / 1588
页数:7
相关论文
共 50 条
  • [1] Wind power prediction analysis by ANFIS, GA-ANFIS and PSO-ANFIS
    Kumar, Neeraj
    Sudha, K.
    Tharani, Kusum
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2022, 43 (03): : 481 - 486
  • [2] Prediction of Lung Nicotine Concentration Based on Novel GA-ANFIS System Approach
    Fazlic, Lejla Begic
    Avdagic, Aja
    2015 XXV INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATION AND AUTOMATION TECHNOLOGIES (ICAT), 2015,
  • [3] Modeling of switched reluctance motor based on GA-ANFIS
    Xu, Ai-De
    Fan, Yin-Hai
    Li, Zi-Qiang
    Dianji yu Kongzhi Xuebao/Electric Machines and Control, 2011, 15 (07): : 54 - 59
  • [4] Biomass Higher Heating Value Prediction Analysis by ANFIS, PSO-ANFIS and GA-ANFIS
    Ceylan, Z.
    Pekel, E.
    Ceylan, S.
    Bulkan, S.
    GLOBAL NEST JOURNAL, 2018, 20 (03): : 589 - 597
  • [5] Application of novel ANFIS-PSO approach to predict asphaltene precipitation
    Keybondorian, Ebrahim
    Taherpour, Alireza
    Bemani, Amin
    Hamule, Touba
    PETROLEUM SCIENCE AND TECHNOLOGY, 2018, 36 (02) : 154 - 159
  • [6] Development of a novel ANFIS-GA method for investigation of effect of inhibitors on asphaltene precipitation
    Esfandiarian, Ali
    Sedaghat, Milad
    PETROLEUM SCIENCE AND TECHNOLOGY, 2019, 37 (14) : 1626 - 1633
  • [7] 基于GA-ANFIS的开关磁阻电机建模
    许爱德
    樊印海
    李自强
    电机与控制学报, 2011, 15 (07) : 54 - 59
  • [8] GA-ANFIS Expert System Prototype for Prediction of Dermatological Diseases
    Fazlic, Lejla Begic
    Avdagic, Korana
    Omanovic, Samir
    DIGITAL HEALTHCARE EMPOWERING EUROPEANS, 2015, 210 : 622 - 626
  • [9] Fault location technique using GA-ANFIS for UHV line
    Banu, G.
    Suja, S.
    ARCHIVES OF ELECTRICAL ENGINEERING, 2014, 63 (02) : 247 - 262
  • [10] Phase behavior modelling of asphaltene precipitation utilizing MLP-ANN approach
    Zarei, Fariba
    Baghban, Alireza
    PETROLEUM SCIENCE AND TECHNOLOGY, 2017, 35 (20) : 2009 - 2015