A fixed point approach to the stability of functional equations in non-Archimedean metric spaces

被引:108
|
作者
BrzdeK, Janusz [1 ]
Cieplinski, Krzysztof [1 ]
机构
[1] Pedag Univ, Dept Math, PL-30084 Krakow, Poland
关键词
Non-Archimedean normed space; Ultrametric; Fixed point; Hyers-Ulam stability; Functional equation in a single variable; Metric space; HYERS-ULAM STABILITY; ADDITIVE MAPPINGS; LINEAR RECURRENCE; NORMED SPACES; FIELDS;
D O I
10.1016/j.na.2011.06.050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we prove a simple fixed point theorem for a special class of complete metric spaces (namely, complete non-Archimedean metric spaces which are connected with some problems coming from quantum physics, p-adic strings and superstrings). We also show that this theorem is a very efficient and convenient tool for proving the Hyers-Ulam stability of a quite wide class of functional equations in a single variable. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:6861 / 6867
页数:7
相关论文
共 50 条
  • [1] A fixed point approach to the stability of nonic functional equation in non-Archimedean spaces
    Xu, Tian-Zhou
    Ding, Yali
    Rassias, John Michael
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (02) : 359 - 368
  • [2] A FIXED POINT APPROACH TO THE STABILITY OF EULER-LAGRANGE SEXTIC (a, b)-FUNCTIONAL EQUATIONS IN ARCHIMEDEAN AND NON-ARCHIMEDEAN BANACH SPACES
    Ghaemi, Mohammad Bagher
    Choubin, Mehdi
    Saadati, Reza
    Park, Choonkil
    Shin, Dong Yun
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 21 (01) : 170 - 181
  • [3] STABILITY OF FUNCTIONAL EQUATIONS IN NON-ARCHIMEDEAN SPACES
    Moslehian, Mohammad Sal
    Rassias, Themistocles M.
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2007, 1 (02) : 325 - 334
  • [4] Fixed Point Approach: Ulam Stability Results of Functional Equation in Non-Archimedean Fuzzy ?-2-Normed Spaces and Non-Archimedean Banach Spaces
    Tamilvanan, Kandhasamy
    Alkhaldi, Ali H.
    Agarwal, Ravi P.
    Alanazi, Abdulaziz M.
    [J]. MATHEMATICS, 2023, 11 (02)
  • [5] STABILITY OF DRYGAS TYPE FUNCTIONAL EQUATIONS WITH INVOLUTION IN NON-ARCHIMEDEAN BANACH SPACES BY FIXED POINT METHOD
    Kim, Chang Il
    Han, Gil Jun
    [J]. JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2016, 34 (5-6): : 509 - 517
  • [6] (JCLR) property and fixed point in non-Archimedean fuzzy metric spaces
    Beg, I.
    Ahmed, M. A.
    Nafadi, H. A.
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2018, 9 (01): : 195 - 201
  • [7] Fixed point approach to the stability of a cubic and quartic mixed type functional equation in non-archimedean spaces
    Elumalai, P.
    Sangeetha, S.
    Selvan, A. Ponmana
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 33 (02): : 124 - 136
  • [8] A Fixed Point Approach to Non-Archimedean Stabilities of IQD and IQA Functional Equations
    Kumar, Beri Venkatachalapathy Senthil
    Sabarinathan, Sriramulu
    [J]. THAI JOURNAL OF MATHEMATICS, 2022, 20 (01): : 69 - 78
  • [9] Fixed point theoreins and the Ulam-Hyers stability in non-Archimedean cone metric spaces
    Nguyen Bich Huy
    Tran Dinh Thanh
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 414 (01) : 10 - 20
  • [10] NEW APPROACH TO CARISTI'S FIXED POINT THEOREM ON NON-ARCHIMEDEAN FUZZY METRIC SPACES
    Sedghi, S.
    Shobkolaei, N.
    Altun, I.
    [J]. IRANIAN JOURNAL OF FUZZY SYSTEMS, 2015, 12 (02): : 137 - 143