A Fixed Point Approach to Non-Archimedean Stabilities of IQD and IQA Functional Equations

被引:0
|
作者
Kumar, Beri Venkatachalapathy Senthil [1 ]
Sabarinathan, Sriramulu [2 ]
机构
[1] Univ Technol & Appl Sci, Dept Informat Technol, Nizwa 611, Oman
[2] SRM Inst Sci & Technol, Dept Math, Kattankulthur 603203, Tamil Nadu, India
来源
THAI JOURNAL OF MATHEMATICS | 2022年 / 20卷 / 01期
关键词
reciprocal functional equation; reciprocal-difference functional equation; reciprocal-adjoint functional equation; generalized Ulam-Hyers stability; APPROXIMATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present work, an inverse-quadratic difference functional equation and an inverse-quadratic adjoint functional equation are solved. The non-Archimedean stabilities of these equations are proved via fixed point method. Suitable counter-examples are presented to justify the failure of stability of these equations for singular cases. As an application, two new relationships are induced through the solution of these equations using inverse square law in physics.
引用
收藏
页码:69 / 78
页数:10
相关论文
共 50 条
  • [1] A fixed point approach to the stability of functional equations in non-Archimedean metric spaces
    BrzdeK, Janusz
    Cieplinski, Krzysztof
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (18) : 6861 - 6867
  • [2] A fixed point approach to the stability of nonic functional equation in non-Archimedean spaces
    Xu, Tian-Zhou
    Ding, Yali
    Rassias, John Michael
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (02) : 359 - 368
  • [3] A FIXED POINT APPROACH TO THE STABILITY OF EULER-LAGRANGE SEXTIC (a, b)-FUNCTIONAL EQUATIONS IN ARCHIMEDEAN AND NON-ARCHIMEDEAN BANACH SPACES
    Ghaemi, Mohammad Bagher
    Choubin, Mehdi
    Saadati, Reza
    Park, Choonkil
    Shin, Dong Yun
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 21 (01) : 170 - 181
  • [4] FIXED POINT AND QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN BANACH SPACES
    Lee, Jung Rye
    Shin, Dong Yun
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 21 (03) : 482 - 492
  • [5] Non-Archimedean stabilities of multiplicative inverse μ-functional inequalities
    Dutta, Hemen
    Kumar, B. V. Senthil
    Suresh, S.
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2024, 32 (01): : 141 - 154
  • [6] On approximate dectic mappings in non-Archimedean spaces: a fixed point approach
    Ebadian, Ali
    Aghalary, Rasoul
    Abolfathi, Mohammad Ali
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2014, 5 (02): : 111 - 122
  • [7] STABILITY OF DRYGAS TYPE FUNCTIONAL EQUATIONS WITH INVOLUTION IN NON-ARCHIMEDEAN BANACH SPACES BY FIXED POINT METHOD
    Kim, Chang Il
    Han, Gil Jun
    [J]. JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2016, 34 (5-6): : 509 - 517
  • [8] Fixed Point Approach: Ulam Stability Results of Functional Equation in Non-Archimedean Fuzzy ?-2-Normed Spaces and Non-Archimedean Banach Spaces
    Tamilvanan, Kandhasamy
    Alkhaldi, Ali H.
    Agarwal, Ravi P.
    Alanazi, Abdulaziz M.
    [J]. MATHEMATICS, 2023, 11 (02)
  • [9] Non-Archimedean meromorphic solutions of functional equations
    Hu, Pei-Chu
    Luan, Yong-Zhi
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2016, 23 (03) : 373 - 383
  • [10] Fixed point approach to the stability of a cubic and quartic mixed type functional equation in non-archimedean spaces
    Elumalai, P.
    Sangeetha, S.
    Selvan, A. Ponmana
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 33 (02): : 124 - 136