Ordered mesogenic units-containing hyperbranched star liquid crystal all-solid-state polymer electrolyte for high-safety lithium-ion batteries

被引:39
|
作者
Wang, Shi [1 ]
Wang, Ailian [1 ]
Liu, Xu [1 ]
Xu, Hao [1 ]
Chen, Jie [1 ]
Zhang, Liaoyun [1 ]
机构
[1] Univ Chinese Acad Sci, Coll Chem & Chem Engn, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Liquid crystal; Hyperbranched star liquid crystal polymer; Orientation; All-solid-state polymer electrolytes; Lithium ion batteries; METAL BATTERIES; COPOLYMERS; TRANSPORT; PERFORMANCE; CARBONATE; CONDUCTIVITY; TEMPERATURE;
D O I
10.1016/j.electacta.2017.10.163
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Functional liquid crystal polymers have attracted much attention as new all-solid-state polymer electrolytes due to their ability of orientation. In this paper, a hyperbranched star liquid crystal polymer (HSLCP) electrolyte for lithium-ion batteries (LIBs) is developed for the first time. This type of HSLCP bears a hyperbranched poly(glycidol) (HPG) as core, poly-e-caprolactone (PCL) and poly (4-cyanobiphenyl methylmethacrylate) ((LC)(x)) compose the block arms of the HSLCP. (LC)(x) segments, one part of the arms, are assisted to promote transmission of Li-ion via orientation and PCL segments are used to dissociate lithium salt and efficiently migrate charge carriers. The good self-standing all-solid-state polymer electrolyte film composed of HSLCP and lithium bis(trifluoromethanesulfonimide (LiTFSI) can be formed by solution casting method. It is demonstrated that such a HSLCP exhibits good thermal stability (368 degrees C), the HSLCP-based electrolyte shows high ionic conductivity (5.98 x 10(-5) S cm(-1) at 30 degrees C), outstanding ion transference number (0.63), and wide electrochemical window (5.12 V). In addition, LiFePO4/Li batteries employing the electrolyte deliver good cycling performance and rate capability. Simultaneously, the corresponding half-cell can still power a LED lamp at room temperature. Thus, this is a great progress for liquid crystal-based polymer electrolytes to be applied to high energy LIBs. (c) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:213 / 224
页数:12
相关论文
共 50 条
  • [21] Electrochemical performances of a new solid composite polymer electrolyte based on hyperbranched star polymer and ionic liquid for lithium-ion batteries
    Ailian Wang
    Hao Xu
    Qian Zhou
    Xu Liu
    Zhengyao Li
    Rui Gao
    Xiangfeng Liu
    Liaoyun Zhang
    Journal of Solid State Electrochemistry, 2017, 21 : 2355 - 2364
  • [22] Polymeric ionic liquid enhanced all-solid-state electrolyte membrane for high-performance lithium-ion batteries
    Wang, Ailian
    Liu, Xu
    Wang, Shi
    Chen, Jie
    Xu, Hao
    Xing, Qian
    Zhang, Liaoyun
    ELECTROCHIMICA ACTA, 2018, 276 : 184 - 193
  • [23] A solid polymer electrolyte based on star-like hyperbranched β-cyclodextrin for all-solid-state sodium batteries
    Chen, Suli
    Feng, Fan
    Yin, Yimei
    Che, Haiying
    Liao, Xiao-Zhen
    Ma, Zi-Feng
    JOURNAL OF POWER SOURCES, 2018, 399 : 363 - 371
  • [24] Incorporation of Poly(Ionic Liquid) with PVDF-HFP-Based Polymer Electrolyte for All-Solid-State Lithium-Ion Batteries
    Ruan, Zhefei
    Du, Yuzhe
    Pan, Hongfei
    Zhang, Ruiming
    Zhang, Fangfang
    Tang, Haolin
    Zhang, Haining
    POLYMERS, 2022, 14 (10)
  • [25] Composite Polymer Electrolyte based on Liquid Crystalline Copolymer with High-temperature Stability and Bendability for All-solid-state Lithium-ion Batteries
    Cao, Xiaoyan
    Cheng, Jiaming
    Zhang, Xiubo
    Zhou, Dan
    Tong, Yongfen
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (01): : 677 - 695
  • [26] Solvent-free synthesis of PEO/garnet composite electrolyte for high-safety all-solid-state lithium batteries
    Zhuang, Hua
    Ma, Wencheng
    Xie, Jingwei
    Liu, Xiaoyu
    Li, Bobo
    Jiang, Yong
    Huang, Shoushuang
    Chen, Zhiwen
    Zhao, Bing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 860
  • [27] Lithium nitridonickelate as anode coupled with argyrodite electrolyte for all-solid-state lithium-ion batteries
    Qu, Yaxin
    Mateos, Mickael
    Emery, Nicolas
    Cuevas, Fermin
    Mercier, Dimitri
    Zanna, Sandrine
    Agustin, Rios de Anda
    Meziani, Narimane
    Zhang, Junxian
    JOURNAL OF ENERGY STORAGE, 2024, 102
  • [28] Solid polymer electrolyte based on waterborne polyurethane for all-solid-state lithium ion batteries
    Bao, Junjie
    Tao, Can
    Yu, Ran
    Gao, Minghao
    Huang, Yiping
    Chen, Chunhua
    JOURNAL OF APPLIED POLYMER SCIENCE, 2017, 134 (48)
  • [29] Solid electrolyte based on 2-adamantanone for all-solid-state lithium-ion batteries
    Bardenhagen, Ingo
    Soto, Marc
    Langer, Frederieke
    Koschek, Katharina
    Schwenzel, Julian
    IONICS, 2022, 28 (08) : 3615 - 3621
  • [30] Solid electrolyte based on 2-adamantanone for all-solid-state lithium-ion batteries
    Ingo Bardenhagen
    Marc Soto
    Frederieke Langer
    Katharina Koschek
    Julian Schwenzel
    Ionics, 2022, 28 : 3615 - 3621