Effects of lanthanide dopants on oxygen diffusion in yttria-stabilized zirconia

被引:21
|
作者
Krishnamurthy, R [1 ]
Srolovitz, DJ
Kudin, KN
Car, R
机构
[1] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
[2] Princeton Univ, Princeton Inst Sci & Technol Mat, Princeton, NJ 08544 USA
[3] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
关键词
D O I
10.1111/j.1551-2916.2005.00353.x
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The effects of lanthanide co-dopants on oxygen diffusion in yttria-stabitized zirconia (YSZ) are studied using a combined first principles density functional theory (DFT)/kinetic Monte Carlo (kMC) modeling approach. DIFT methods are used to calculate barrier energies for oxygen migration in different local cation environments, which are then input into kMC simulations to obtain long-time oxygen diffusivities and activation energies. Simulation results show a substantial increase in the maximum value of the oxygen diffusivity upon co-doping and in the dopant content at which this value is obtained for Lu-co-doped YSZ; while relatively little change is seen for Gd-co-doped YSZ. Examination of the DIFT barrier energies reveals a linear scaling of barrier heights with the size of cations at the diffusion transition state. Using this strong correlation, oxygen diffusivity is examined in YSZ co-doped with several lanthanide elements. The oxygen diffusivity decreases with dopant atomic number (and decreasing dopant ion size) for co-dopants smaller than Y, and changes relatively little when Y is replaced by co-dopants larger than it. These results are broadly consistent with experiment, and are explained in terms of cation-dopant and vacancy concentration-dependent correlation effects, with the aid of a simple analytical model.
引用
收藏
页码:2143 / 2151
页数:9
相关论文
共 50 条
  • [41] THERMAL EXPANSION OF YTTRIA-STABILIZED ZIRCONIA
    NIELSEN, TH
    LEIPOLD, MH
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1964, 47 (03) : 155 - 155
  • [42] Adsorption of Water on Yttria-Stabilized Zirconia
    Chaopradith, Dominic T.
    Scanlon, David O.
    Catlow, C. Richard A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (39): : 22526 - 22533
  • [43] Ferromagnetism in defective yttria-stabilized zirconia
    Ryu, Sangkyun
    Cho, Daegill
    Park, Jun Kue
    Lee, Jae S.
    Hong, Tae Eun
    Byeon, Mirang
    Jeen, Hyoungjeen
    Current Applied Physics, 2022, 43 : 66 - 71
  • [44] DEFORMATION MECHANISMS IN YTTRIA-STABILIZED ZIRCONIA
    LANKFORD, J
    PAGE, RA
    RABENBERG, L
    JOURNAL OF MATERIALS SCIENCE, 1988, 23 (11) : 4144 - 4156
  • [45] Feasibility of yttria-stabilized zirconia Response
    Stout, Matthew
    Cook, Brian
    Arola, Dwayne
    Fong, Hanson
    Raigrodski, Ariel
    Bollen, Anne-Marie
    AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2017, 151 (05) : 837 - 838
  • [46] EXAFS STUDY OF YTTRIA-STABILIZED ZIRCONIA
    CATLOW, CRA
    CHADWICK, AV
    GREAVES, GN
    MORONEY, LM
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1986, 69 (03) : 272 - 277
  • [47] Ferromagnetism in defective yttria-stabilized zirconia
    Ryu, Sangkyun
    Cho, Daegill
    Park, Jun Kue
    Lee, Jae S.
    Hong, Tae Eun
    Byeon, Mirang
    Jeen, Hyoungjeen
    CURRENT APPLIED PHYSICS, 2022, 43 : 66 - 71
  • [48] ELECTROSTATIC DISPERSION OF YTTRIA-STABILIZED ZIRCONIA
    RICHARDS, VL
    POWDER TECHNOLOGY, 1987, 52 (03) : 261 - 262
  • [49] INVITRO AGING OF YTTRIA-STABILIZED ZIRCONIA
    DRUMMOND, JL
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1989, 72 (04) : 675 - 676
  • [50] Zr and stabilizer tracer diffusion in calcia- and yttria-stabilized zirconia
    Kilo, M
    Borchardt, G
    Lesage, B
    Weber, S
    Scherrer, S
    Martin, M
    Schroeder, M
    SOLID OXIDE FUEL CELLS VII (SOFC VII), 2001, 2001 (16): : 275 - 283