XMAP215 is a processive microtubule polymerase

被引:403
|
作者
Brouhard, Gary J. [1 ]
Stear, Jeffrey H. [1 ]
Noetzel, Tim L. [1 ]
Al-Bassam, Jawdat [2 ]
Kinoshita, Kazuhisa [3 ]
Harrison, Stephen C. [2 ]
Howard, Jonathon [1 ]
Hyman, Anthony A. [1 ]
机构
[1] Max Planck Inst Mol Cell Bio & Genet, Dresden, Germany
[2] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
[3] Kyoto Univ, Grad Sch Biostudies, Kyoto, Japan
关键词
D O I
10.1016/j.cell.2007.11.043
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fast growth of microtubules is essential for rapid assembly of the microtubule cytoskeleton during cell proliferation and differentiation. XMAP215 belongs to a conserved family of proteins that promote microtubule growth. To determine how XMAP215 accelerates growth, we developed a single-molecule assay to visualize directly XMAP215-GFP interacting with dynamic microtubules. XMAP215 binds free tubulin in a 1: 1 complex that interacts with the microtubule lattice and targets the ends by a diffusion-facilitated mechanism. XMAP215 persists at the plus end for many rounds of tubulin subunit addition in a form of "tip tracking.'' These results show that XMAP215 is a processive polymerase that directly catalyzes the addition of up to 25 tubulin dimers to the growing plus end. Under some circumstances XMAP215 can also catalyze the reverse reaction, namely microtubule shrinkage. The similarities between XMAP215 and formins, actin polymerases, suggest that processive tip tracking is a common mechanism for stimulating the growth of cytoskeletal polymers.
引用
收藏
页码:79 / 88
页数:10
相关论文
共 50 条
  • [41] The TOGp protein is a new human microtubule-associated protein homologous to the Xenopus XMAP215
    Charrasse, S
    Schroeder, M
    Gauthier-Rouviere, C
    Ango, F
    Cassimeris, L
    Gard, DL
    Larroque, C
    JOURNAL OF CELL SCIENCE, 1998, 111 : 1371 - 1383
  • [42] DdCP224, the Dictyostelium XMAP215 homologue, is required for microtubule elongation and microtubule tip/cortex interactions in vivo
    Gräf, R
    Hestermann, A
    MOLECULAR BIOLOGY OF THE CELL, 2002, 13 : 188A - 188A
  • [43] XMAP215 is a microtubule nucleation factor that functions synergistically with the gamma-tubulin ring complex.
    Petry, S.
    Thawani, A.
    Kadzik, R.
    MOLECULAR BIOLOGY OF THE CELL, 2017, 28
  • [44] Regulation of microtubule dynamics by TOG-domain proteins XMAP215/Dis1 and CLASP
    Al-Bassam, Jawdat
    Chang, Fred
    TRENDS IN CELL BIOLOGY, 2011, 21 (10) : 604 - 614
  • [45] Synergy between XMAP215 and EB1 increases microtubule growth rates to physiological levels
    Marija Zanic
    Per O. Widlund
    Anthony A. Hyman
    Jonathon Howard
    Nature Cell Biology, 2013, 15 : 688 - 693
  • [46] Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts
    Régis Tournebize
    Andrei Popov
    Kazuhisa Kinoshita
    Anthony J. Ashford
    Sonja Rybina
    Andrei Pozniakovsky
    Thomas U. Mayer
    Claire E. Walczak
    Eric Karsenti
    Anthony A. Hyman
    Nature Cell Biology, 2000, 2 : 13 - 19
  • [47] Growth cone-specific functions of XMAP215 in restricting microtubule dynamics and promoting axonal outgrowth
    Lowery, Laura Anne
    Stout, Alina
    Faris, Anna E.
    Ding, Liya
    Baird, Michelle A.
    Davidson, Michael W.
    Danuser, Gaudenz
    Van Vactor, David
    NEURAL DEVELOPMENT, 2013, 8
  • [48] Synergy between XMAP215 and EB1 increases microtubule growth rates to physiological levels
    Zanic, Marija
    Widlund, Per O.
    Hyman, Anthony A.
    Howard, Jonathon
    NATURE CELL BIOLOGY, 2013, 15 (06) : 688 - +
  • [49] MOR1, the plant homologue of the microtubule-associated protein, XMAP215, regulates microtubule assembly dynamics.
    Wasteneys, G
    Kawamura, E
    Rashbrooke, M
    Himmelspach, R
    Yeomans, A
    Mackay, D
    Collings, D
    EUROPEAN JOURNAL OF CELL BIOLOGY, 2004, 83 : 77 - 77
  • [50] The Fission Yeast XMAP215 Homolog Dis1p Is Involved in Microtubule Bundle Organization
    Roque, Helio
    Ward, Jonathan J.
    Murrells, Lindsay
    Brunner, Damian
    Antony, Claude
    PLOS ONE, 2010, 5 (12):