Multivalued mappings in generalized chaos synchronization

被引:0
|
作者
Rulkov, NF [1 ]
Afraimovich, VS
Lewis, CT
Chazottes, JR
Cordonet, A
机构
[1] Univ Calif San Diego, Inst Nonlinear Sci, La Jolla, CA 92093 USA
[2] UASLP, IICO, San Luis Potosi 78000, Mexico
[3] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[4] Univ Sao Paulo, IME, BR-05508900 Sao Paulo, Brazil
[5] Univ Mediterranee, Ctr Phys Theor, F-13288 Marseille, France
来源
PHYSICAL REVIEW E | 2001年 / 64卷 / 01期
关键词
D O I
暂无
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The onset of generalized synchronization of chaos in directionally coupled systems corresponds to the formation of a continuous mapping that enables one to persistently define the state of the response system from the trajectory of the drive system. A recently developed theory of generalized synchronization of chaos deals only with the case where this synchronization mapping is a single-valued function. In this paper, we explore generalized synchronization in a regime where the synchronization mapping can become a multivalued function. Specifically, we study the properties of the multivalued mapping that occurs between the drive and response systems when the systems are synchronized with a frequency ratio other than one-to-one, and address the issues of the existence and continuity of such mappings. The basic theoretical framework underlying the considered synchronization regimes is then developed.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] The Part Research on Bidirectional Generalized Chaos Synchronization
    Zang, Hong-Yan
    Li, Guo-Dong
    Han, Xue-Juan
    Wang, Le-le
    WIRELESS PERSONAL COMMUNICATIONS, 2018, 102 (02) : 1269 - 1282
  • [42] Generalized synchronization of chaos via linear transformations
    Yang, T
    Chua, LO
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (01): : 215 - 219
  • [43] Generalized synchronization of chaos: The auxiliary system approach
    Abarbanel, HDI
    Rulkov, NF
    Sushchik, MM
    PHYSICAL REVIEW E, 1996, 53 (05) : 4528 - 4535
  • [44] Generalized synchronization of chaos based on suitable separation
    Li, Guo-Hui
    CHAOS SOLITONS & FRACTALS, 2009, 39 (05) : 2056 - 2062
  • [45] Bistable chaos without symmetry in generalized synchronization
    Guan, SG
    Lai, CH
    Wei, GW
    PHYSICAL REVIEW E, 2005, 71 (03):
  • [46] On Convergence Theorems for Two Generalized Nonexpansive Multivalued Mappings in Hyperbolic Spaces
    Chuadchawna, Preeyalak
    Farajzadeh, Ali
    Kaewcharoen, Anchalee
    THAI JOURNAL OF MATHEMATICS, 2019, 17 (02): : 445 - 461
  • [47] Approximating Stationary Points of Multivalued Generalized Nonexpansive Mappings in Metric Spaces
    Ullah, Kifayat
    Ahmad, Junaid
    Arshad, Muhammad
    de la Sen, Manuel
    Khan, Muhammad Safi Ullah
    ADVANCES IN MATHEMATICAL PHYSICS, 2020, 2020
  • [48] Generalized passivity-based chaos synchronization
    Ahn, C. K.
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2010, 31 (08) : 1009 - 1018
  • [49] Diagnostics of the generalized synchronization in microwave generators of chaos
    A. V. Starodubov
    A. A. Koronovskii
    A. E. Khramov
    Yu. D. Zharkov
    B. S. Dmitriev
    V. N. Skorokhodov
    Physics of Wave Phenomena, 2010, 18 : 51 - 56
  • [50] Some generalized vector variational inequalities and complementarity problems for multivalued mappings
    Huang, NJ
    Gao, CJ
    APPLIED MATHEMATICS LETTERS, 2003, 16 (07) : 1003 - 1010