Multivalued mappings in generalized chaos synchronization

被引:0
|
作者
Rulkov, NF [1 ]
Afraimovich, VS
Lewis, CT
Chazottes, JR
Cordonet, A
机构
[1] Univ Calif San Diego, Inst Nonlinear Sci, La Jolla, CA 92093 USA
[2] UASLP, IICO, San Luis Potosi 78000, Mexico
[3] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[4] Univ Sao Paulo, IME, BR-05508900 Sao Paulo, Brazil
[5] Univ Mediterranee, Ctr Phys Theor, F-13288 Marseille, France
来源
PHYSICAL REVIEW E | 2001年 / 64卷 / 01期
关键词
D O I
暂无
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The onset of generalized synchronization of chaos in directionally coupled systems corresponds to the formation of a continuous mapping that enables one to persistently define the state of the response system from the trajectory of the drive system. A recently developed theory of generalized synchronization of chaos deals only with the case where this synchronization mapping is a single-valued function. In this paper, we explore generalized synchronization in a regime where the synchronization mapping can become a multivalued function. Specifically, we study the properties of the multivalued mapping that occurs between the drive and response systems when the systems are synchronized with a frequency ratio other than one-to-one, and address the issues of the existence and continuity of such mappings. The basic theoretical framework underlying the considered synchronization regimes is then developed.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] GENERALIZED DEGREE OF MULTIVALUED MAPPINGS
    GELMAN, BD
    LECTURE NOTES IN MATHEMATICS, 1992, 1520 : 173 - 192
  • [2] ON THE CONVERGENCE OF GENERALIZED CONTINUOUS MULTIVALUED MAPPINGS
    Ganguly, D. K.
    Mallick, Piyali
    REAL ANALYSIS EXCHANGE, 2008, 34 (02) : 541 - 548
  • [3] Generalized synchronization of chaos
    Kocarev, L
    Parlitz, U
    Stojanovski, T
    Panovski, L
    ISCAS 96: 1996 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - CIRCUITS AND SYSTEMS CONNECTING THE WORLD, VOL 3, 1996, : 116 - 119
  • [4] GENERALIZED MULTIVALUED QUASIVARIATIONAL INCLUSIONS FOR FUZZY MAPPINGS
    Liu, Zeqing
    Ume, Jeong Sheok
    Kang, Shin Min
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2007, 14 (01): : 37 - 48
  • [5] GENERALIZED SEMIFLOWS AND CHAOS IN MULTIVALUED DYNAMICAL SYSTEMS
    Beran, Zdenek
    Celikovsy, Sergej
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2012, 26 (25):
  • [6] On generalized synchronization of spatial chaos
    Chen, GR
    Liu, ST
    CHAOS SOLITONS & FRACTALS, 2003, 15 (02) : 311 - 318
  • [7] Discontinuous generalized synchronization of chaos
    Fernandez, Bastien
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2012, 27 (01): : 105 - 116
  • [8] Generalized synchronization of chaos in a laser
    Tang, DY
    EXPERIMENTAL CHAOS, 2002, 622 : 407 - 426
  • [9] Differentiable generalized synchronization of chaos
    Hunt, BR
    Ott, E
    Yorke, JA
    PHYSICAL REVIEW E, 1997, 55 (04) : 4029 - 4034
  • [10] Differentiable generalized synchronization of chaos
    Hunt, Brian R.
    Ott, Edward
    Yorke, James A.
    Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1997, 55 (04): : 4029 - 4034