Approximate maximum likelihood source separation using the natural gradient

被引:6
|
作者
Choi, S
Cichocki, A
Zhang, L
Amari, S
机构
关键词
D O I
10.1109/SPAWC.2001.923891
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper addresses a maximum likelihood approach to source separation in the case of overdetermined mixtures corrupted by additive white Gaussian noise. We present an objective function that is an approximate likelihood function based on the Laplace approximation. Then we derive a natural gradient adaptation algorithm which maximizes the corresponding approximate likelihood function. Useful behavior of the proposed method is verified by numerical experiments.
引用
收藏
页码:235 / 238
页数:4
相关论文
共 50 条
  • [31] Blind Source Separation Based on Natural Gradient Algorithm
    Wang Sanxiu
    ACC 2009: ETP/IITA WORLD CONGRESS IN APPLIED COMPUTING, COMPUTER SCIENCE, AND COMPUTER ENGINEERING, 2009, : 303 - 306
  • [32] An Improved Natural Gradient Algorithm for Blind Source Separation
    Zhao Jia
    Yang Jing-shu
    Gao Jun-yao
    2010 2ND INTERNATIONAL ASIA CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS (CAR 2010), VOL 1, 2010, : 60 - 63
  • [33] Natural Gradient Improvement Methods in Blind Source Separation
    Bai Jun
    Shen Xiao-hong
    Wang Hai-yan
    Zhang Xue
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOLS 1-9, 2009, : 3737 - 3741
  • [35] Estimating parameters in diffusion processes using an approximate maximum likelihood approach
    Lindstrom, Erik
    ANNALS OF OPERATIONS RESEARCH, 2007, 151 (01) : 269 - 288
  • [36] Approximate maximum likelihood estimation using data-cloning ABC
    Picchini, Umberto
    Anderson, Rachele
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 105 : 166 - 183
  • [37] Approximate the finite sample bias for maximum likelihood estimators using the score
    Lambrecht, B
    Perraudin, W
    Satchell, S
    ECONOMETRIC THEORY, 1997, 13 (02) : 310 - 312
  • [38] Estimating parameters in diffusion processes using an approximate maximum likelihood approach
    Erik Lindström
    Annals of Operations Research, 2007, 151 : 269 - 288
  • [39] An approximate maximum-likelihood estimator for localisation using bistatic measurements
    Fraenken, Dietrich
    2018 SYMPOSIUM ON SENSOR DATA FUSION: TRENDS, SOLUTIONS, APPLICATIONS (SDF), 2018,
  • [40] Target Localization Using Approximate Maximum Likelihood for MIMO Radar Systems
    Almalki, Abdulellah
    Liu, Huaping
    Zou, Yanbin
    2019 IEEE 90TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2019-FALL), 2019,