Adaptive Rank Estimate in Robust Principal Component Analysis

被引:4
|
作者
Xu, Zhengqin [1 ,3 ]
He, Rui [2 ,3 ]
Xie, Shoulie [4 ]
Wu, Shiqian [2 ,3 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Machinery & Automat, Wuhan, Hubei, Peoples R China
[2] Wuhan Univ Sci & Technol, Sch Informat Sci & Engn, Wuhan, Hubei, Peoples R China
[3] Wuhan Univ Sci & Technol, Inst Robot & Intelligent Syst, Wuhan, Hubei, Peoples R China
[4] Inst Infocomm Res A STAR, Signal Proc RF & Opt Dept, Singapore, Singapore
基金
中国国家自然科学基金;
关键词
MATRIX COMPLETION; PCA; ALGORITHM; IMAGE;
D O I
10.1109/CVPR46437.2021.00651
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Robust principal component analysis (RPCA) and its variants have gained wide applications in computer vision. However, these methods either involve manual adjustment of some parameters, or require the rank of a low-rank mafrix to be known a prior. In this paper, an adaptive rank estimate based RPCA (ARE-RPCA) is proposed, which adaptively assigns weights on different singular values via rank estimation. More specifically, we study the characteristics of the low-rank mafrix, and develop an improved Gerschgorin disk theorem to estimate the rank of the low-rank matrix accurately. Furthermore in view of the issue occurred in the Gerschgorin disk theorem that adjustment factor need to be manually pre-defined, an adaptive setting method, which greatly facilitates the practical implementation of the rank estimation, is presented. Then, the weights of singular values in the nuclear norm are updated adaptively based on iteratively estimated rank, and the resultant low-rank matrix is close to the target. Experimental results show that the proposed ARE-RPCA outperforms the state-of-the-art methods in various complex scenarios.
引用
收藏
页码:6573 / 6582
页数:10
相关论文
共 50 条
  • [31] Double robust principal component analysis
    Wang, Qianqian
    Gao, QuanXue
    Sun, Gan
    Ding, Chris
    [J]. NEUROCOMPUTING, 2020, 391 : 119 - 128
  • [32] Robust and Sparse Principal Component Analysis With Adaptive Loss Minimization for Feature Selection
    Bian, Jintang
    Zhao, Dandan
    Nie, Feiping
    Wang, Rong
    Li, Xuelong
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (03) : 3601 - 3614
  • [33] Bayesian Robust Principal Component Analysis
    Ding, Xinghao
    He, Lihan
    Carin, Lawrence
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (12) : 3419 - 3430
  • [34] Robust Sparse Principal Component Analysis
    Croux, Christophe
    Filzmoser, Peter
    Fritz, Heinrich
    [J]. TECHNOMETRICS, 2013, 55 (02) : 202 - 214
  • [35] Robust sparse principal component analysis
    Zhao Qian
    Meng DeYu
    Xu ZongBen
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (09) : 1 - 14
  • [36] A review on robust principal component analysis
    Lee, Eunju
    Park, Mingyu
    Kim, Choongrak
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2022, 35 (02) : 327 - 333
  • [37] Multilinear robust principal component analysis
    Shi, Jia-Rong
    Zhou, Shui-Sheng
    Zheng, Xiu-Yun
    [J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2014, 42 (08): : 1480 - 1486
  • [38] Incomplete robust principal component analysis
    Shi, Jiarong
    Zheng, Xiuyun
    Yong, Longquan
    [J]. ICIC Express Letters, Part B: Applications, 2014, 5 (06): : 1531 - 1538
  • [39] Flexible robust principal component analysis
    Zinan He
    Jigang Wu
    Na Han
    [J]. International Journal of Machine Learning and Cybernetics, 2020, 11 : 603 - 613
  • [40] Robust sparse principal component analysis
    Qian Zhao
    DeYu Meng
    ZongBen Xu
    [J]. Science China Information Sciences, 2014, 57 : 1 - 14