The Gauss map of submanifolds in the Heisenberg group

被引:0
|
作者
Petrov, E. V. [1 ]
机构
[1] Kharkov Natl Univ, UA-61022 Kharkov, Ukraine
关键词
Heisenberg group; Gauss map; Harmonic map; Mean curvature field; Constant mean curvature hypersurface;
D O I
10.1016/j.difgeo.2011.04.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain criteria for the harmonicity of the Gauss map of submanifolds in the Heisenberg group and consider the examples demonstrating the connection between the harmonicity of this map and the properties of the mean curvature field. Also, we introduce a natural class of cylindrical submanifolds and prove that a constant mean curvature hypersurface with harmonic Gauss map is cylindrical. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:516 / 532
页数:17
相关论文
共 50 条
  • [41] Intrinsic curvature of curves and surfaces and a Gauss–Bonnet theorem in the Heisenberg group
    Zoltán M. Balogh
    Jeremy T. Tyson
    Eugenio Vecchi
    Mathematische Zeitschrift, 2017, 287 : 1 - 38
  • [42] Gauss-Bonnet Theorems in the BCV Spaces and the Twisted Heisenberg Group
    Wang, Yong
    Wei, Sining
    RESULTS IN MATHEMATICS, 2020, 75 (03)
  • [43] MODULUS METHOD AND RADIAL STRETCH MAP IN THE HEISENBERG GROUP
    Balogh, Zoltan M.
    Faessler, Katrin
    Platis, Ioannis D.
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2013, 38 (01) : 149 - 180
  • [44] Bracket map for the Heisenberg group and the characterization of cyclic subspaces
    Barbieri, Davide
    Hernandez, Eugenio
    Mayeli, Azita
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2014, 37 (02) : 218 - 234
  • [45] Pseudo-Spherical Submanifolds with 1-Type Pseudo-Spherical Gauss Map
    Bektas, Burcu
    Canfes, Elif Ozkara
    Dursun, Ugur
    RESULTS IN MATHEMATICS, 2017, 71 (3-4) : 867 - 887
  • [46] LORENTZIAN SUBMANIFOLDS IN SEMI-EUCLIDEAN SPACES WITH POINTWISE 1-TYPE GAUSS MAP
    Turgay, Nurettin C.
    PROCEEDINGS OF THE SEVENTEENTH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2016, : 344 - 359
  • [47] Pseudo-Spherical Submanifolds with 1-Type Pseudo-Spherical Gauss Map
    Burcu Bektaş
    Elif Özkara Canfes
    Uğur Dursun
    Results in Mathematics, 2017, 71 : 867 - 887
  • [48] The Gauss map and second fundamental form of surfaces in a Lie group
    Folha, Abigail
    Penafiel, Carlos
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (05) : 1693 - 1711
  • [49] On the Structure of Submanifolds with Degenerate Gauss Maps
    Maks A. Akivis
    Vladislav V. Goldberg
    Geometriae Dedicata, 2001, 86 : 205 - 226
  • [50] CR submanifolds in a sphere and their Gauss maps
    CHENG XiaoLiang
    JI ShanYu
    LIU WeiMing
    Science China Mathematics, 2013, 56 (05) : 1042 - 1050