C-O bond activation using ultralow loading of noble metal catalysts on moderately reducible oxides

被引:150
|
作者
Fu, Jiayi [1 ,2 ]
Lym, Jonathan [1 ,2 ]
Zheng, Weiqing [1 ]
Alexopoulos, Konstantinos [1 ]
Mironenko, Alexander V. [1 ,2 ]
Li, Na [3 ]
Boscoboinik, J. Anibal [1 ,3 ]
Su, Dong [1 ,3 ]
Weber, Ralph T. [4 ]
Vlachos, Dionisios G. [1 ,2 ]
机构
[1] Univ Delaware, Catalysis Ctr Energy Innovat, Newark, DE 19716 USA
[2] Univ Delaware, Dept Chem & Biomol Engn, Newark, DE 19716 USA
[3] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
[4] Bruker BioSpin Corp, Billerica, MA USA
关键词
WATER-GAS SHIFT; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; SINGLE-ATOM CATALYST; ACETIC-ACID; SELECTIVE HYDROGENATION; M-CRESOL; HYDRODEOXYGENATION; KETONIZATION; CONVERSION;
D O I
10.1038/s41929-020-0445-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Selective C-O activation of multifunctional molecules is essential for many important chemical processes. Although reducible metal oxides are active and selective towards reductive C-O bond scission via the reverse Mars-van Krevelen mechanism, the most active oxides undergo bulk reduction during reaction. Here, motivated by the enhanced oxide reducibility by metals, we report a strategy for C-O bond activation by doping the surface of moderately reducible oxides with an ultralow loading of noble metals. We demonstrate the principle using highly dispersed Pt anchored onto TiO2 for furfuryl alcohol conversion to 2-methylfuran. A combination of density functional theory calculations, catalyst characterization (scanning transmission electron microscopy, electron paramagnetic resonance, Fourier-transform infrared spectroscopy and X-ray absorption spectroscopy), kinetic experiments and microkinetic modelling expose substantial C-O activation rate enhancement, without bulk catalyst reduction or unselective ring hydrogenation. A methodology is introduced to quantify various types of sites, revealing that the cationic redox Pt on the TiO2 surface is more active than metallic sites for C-O bond activation.
引用
收藏
页码:446 / 453
页数:8
相关论文
共 50 条
  • [41] Biaryl Construction Based on Nickel-Catalyzed C-O Bond Activation
    Diao, Haiyan
    Shi, Zhangjie
    Liu, Feng
    SYNLETT, 2021, 32 (15) : 1494 - 1512
  • [42] Multielectron C-O Bond Activation Mediated by a Family of Reduced Uranium Complexes
    Kiernicki, John J.
    Newell, Brian S.
    Matson, Ellen M.
    Anderson, Nickolas H.
    Fanwick, Philip E.
    Shores, Matthew P.
    Bart, Suzanne C.
    INORGANIC CHEMISTRY, 2014, 53 (07) : 3730 - 3741
  • [43] Arene Activation at Iridium Facilitates C-O Bond Cleavage of Aryl Ethers
    Miller, Alexander J. M.
    Kaminsky, Werner
    Goldberg, Karen I.
    ORGANOMETALLICS, 2014, 33 (05) : 1245 - 1252
  • [44] Arene activation promotes C-O bond cleavage in aryl alkyl ethers
    Miller, Alexander J. M.
    Goldberg, Karen I.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [45] Ligation state of nickel during C-O bond activation with monodentate phosphines
    Hooker, Leidy V.
    Neufeldt, Sharon R.
    TETRAHEDRON, 2018, 74 (47) : 6717 - 6725
  • [46] Computational studies on Ni-catalyzed C-O bond activation of esters
    Li, Xin
    Hong, Xin
    JOURNAL OF ORGANOMETALLIC CHEMISTRY, 2018, 864 : 68 - 80
  • [47] Nickel-Catalyzed Enantioselective Arylative Activation of Aromatic C-O Bond
    Zhang, Jintong
    Sun, Tingting
    Zhang, Zishuo
    Cao, Haiqun
    Bai, Zhushuang
    Cao, Zhi-Chao
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (44) : 18380 - 18387
  • [48] Nickel-Catalyzed Amination of Silyloxyarenes through C-O Bond Activation
    Wiensch, Eric M.
    Montgomery, John
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (34) : 11045 - 11049
  • [49] Iron-Catalyzed C-O Bond Activation: Opportunity for Sustainable Catalysis
    Bisz, Elwira
    Szostak, Michal
    CHEMSUSCHEM, 2017, 10 (20) : 3964 - 3981
  • [50] Progress in improving the stability of Cu-based catalysts for C-O bond hydrogenation
    Yu X.
    Gao L.
    Zong B.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2023, 42 (11): : 5722 - 5729