The Moore-Penrose inverses of matrices over quaternion polynomial rings

被引:8
|
作者
Huang, Liji [2 ]
Wang, Qing-Wen [1 ]
Zhang, Yang [2 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai, Peoples R China
[2] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada
基金
上海市自然科学基金; 中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Quaternion polynomial matrix; Moore-Penrose inverse; Leverrier-Faddeev algorithm; GENERALIZED INVERSE; STABILITY; SYSTEMS;
D O I
10.1016/j.laa.2015.02.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we define and discuss the Moore-Penrose inverses of matrices with quaternion polynomial entries. When the Moore-Penrose inverses exist, we prove that Leverrier-Faddeev algorithm works for these matrices by using generalized characteristic polynomials. Furthermore, after studying interpolations for quaternion polynomials, we give an efficient algorithm to compute the Moore-Penrose inverses. We developed a Maple package for quaternion polynomial matrices. All algorithms in this paper are implemented, and tested on examples. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:45 / 61
页数:17
相关论文
共 50 条