The Moore-Penrose inverses of matrices over quaternion polynomial rings

被引:8
|
作者
Huang, Liji [2 ]
Wang, Qing-Wen [1 ]
Zhang, Yang [2 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai, Peoples R China
[2] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada
基金
上海市自然科学基金; 中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Quaternion polynomial matrix; Moore-Penrose inverse; Leverrier-Faddeev algorithm; GENERALIZED INVERSE; STABILITY; SYSTEMS;
D O I
10.1016/j.laa.2015.02.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we define and discuss the Moore-Penrose inverses of matrices with quaternion polynomial entries. When the Moore-Penrose inverses exist, we prove that Leverrier-Faddeev algorithm works for these matrices by using generalized characteristic polynomials. Furthermore, after studying interpolations for quaternion polynomials, we give an efficient algorithm to compute the Moore-Penrose inverses. We developed a Maple package for quaternion polynomial matrices. All algorithms in this paper are implemented, and tested on examples. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:45 / 61
页数:17
相关论文
共 50 条
  • [1] The generalized Moore-Penrose inverses of matrices over rings
    Yuan, Wangui
    Liao, Zuhua
    Advances in Matrix Theory and Applications, 2006, : 289 - 292
  • [2] MOORE-PENROSE INVERSES FOR MATRICES OVER SOME NOETHERIAN-RINGS
    PUYSTJENS, R
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1984, 31 (1-3) : 191 - 198
  • [4] On the Moore-Penrose inverses of block matrices over a regular ring
    Zhang, Li-cheng
    Liao, Zu-hua
    Advances in Matrix Theory and Applications, 2006, : 222 - 225
  • [5] On Moore-Penrose inverses over inclines
    Zhang, Limei
    Zhao, Jianli
    Qiao, Lishan
    Advances in Matrix Theory and Applications, 2006, : 131 - 134
  • [6] On the Covariance of Moore-Penrose Inverses in Rings with Involution
    Mahzoon, Hesam
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [7] On weighted Moore-Penrose inverses of incline matrices
    Qiao, Lishan
    Zhang, Limei
    Advances in Matrix Theory and Applications, 2006, : 349 - 352
  • [8] Moore-Penrose inverses of certain bordered matrices
    Jeyaraman, I.
    Divyadevi, T.
    JOURNAL OF ANALYSIS, 2024, 32 (04): : 2077 - 2098
  • [9] POLYGONS, CIRCULANT MATRICES, AND MOORE-PENROSE INVERSES
    WONG, ET
    AMERICAN MATHEMATICAL MONTHLY, 1981, 88 (07): : 509 - 515
  • [10] Computing Moore-Penrose Inverses with Polynomials in Matrices
    Bajo, Ignacio
    AMERICAN MATHEMATICAL MONTHLY, 2021, 128 (05): : 446 - 456