Riemann boundary value problems and reflection of shock for the Chaplygin gas

被引:13
|
作者
Chen ShuXing [1 ]
Qu AiFang [2 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
基金
中国国家自然科学基金;
关键词
Riemann boundary value problem; reflection of shock; Chaplygin gas; wave interaction; Euler system; HYPERBOLIC SYSTEMS;
D O I
10.1007/s11425-012-4393-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study two-dimensional Riemann boundary value problems of Euler system for the isentropic and irrotational Chaplygin gas with initial data being two constant states given in two sectors respectively, where one sector is a quadrant and the other one has an acute vertex angle. We prove that the Riemann boundary value problem admits a global self-similar solution, if either the initial states are close, or the smaller sector is also near a quadrant. Our result can be applied to solving the problem of shock reflection by a ramp.
引用
收藏
页码:671 / 685
页数:15
相关论文
共 50 条
  • [21] A class of periodic Riemann boundary value inverse problems
    Xing, L
    PROCEEDINGS OF THE SECOND ASIAN MATHEMATICAL CONFERENCE 1995, 1998, : 397 - 400
  • [22] The generalized Riemann problem for the Chaplygin gas equation
    Gupta, Pooja
    Chaturvedi, Rahul Kumar
    Singh, L. P.
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2020, 82 : 61 - 65
  • [23] The Riemann problem for the generalized Chaplygin gas with a potential
    Kumozec, Davor
    Nedeljkov, Marko
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (02):
  • [24] Shock Reflection Problems and Gas Dynamics Equations
    Jegdic, Katarina
    NEW ASPECTS OF FLUID MECHANICS, HEAT TRANSFER AND ENVIRONMENT, 2010, : 16 - 16
  • [25] The transition of Riemann solutions of the modified Chaplygin gas equations with friction to the solutions of the Chaplygin gas equations
    Guo, Lihui
    Li, Tong
    Yin, Gan
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2022, 102 (03):
  • [26] Riemann Boundary Value Problems for Triharmonic Functions in Clifford Analysis
    Gu, Longfei
    Du, Jinyuan
    Zhang, Zhongxiang
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2013, 23 (01) : 77 - 103
  • [27] Extension of solutions to Riemann boundary value problems and its application
    Lu, Jianke
    ACTA MATHEMATICA SCIENTIA, 2007, 27 (04) : 694 - 702
  • [28] Prym differentials as solutions to boundary value problems on Riemann surfaces
    Semenko, E. V.
    SIBERIAN MATHEMATICAL JOURNAL, 2016, 57 (01) : 124 - 134
  • [29] Riemann Boundary Value Problems for Triharmonic Functions in Clifford Analysis
    Longfei Gu
    Jinyuan Du
    Zhongxiang Zhang
    Advances in Applied Clifford Algebras, 2013, 23 : 77 - 103
  • [30] Prym differentials as solutions to boundary value problems on Riemann surfaces
    E. V. Semenko
    Siberian Mathematical Journal, 2016, 57 : 124 - 134