One-dimensional point interaction with Griffiths' boundary conditions

被引:4
|
作者
Coutinho, F. A. B. [3 ]
Nogami, Y. [2 ]
Toyama, F. M. [1 ]
机构
[1] Kyoto Sangyo Univ, Dept Comp Sci, Kyoto 6038555, Japan
[2] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada
[3] Univ Sao Paulo, Fac Med, BR-01246903 Sao Paulo, SP, Brazil
基金
加拿大自然科学与工程研究理事会; 日本学术振兴会;
关键词
QUANTUM-MECHANICS; DELTA-FUNCTION; OPERATORS; EQUATION;
D O I
10.1139/P2012-030
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Griffiths proposed a pair of boundary conditions that define a point interaction in one dimensional quantum mechanics. The conditions involve the nth derivative of the wave function where n is a non-negative integer. We re-examine the interaction so defined and explicitly confirm that it is self-adjoint for any even value of n and for n = 1. The interaction is not self-adjoint for odd n > 1. We then propose a similar but different pair of boundary conditions with the nth derivative of the wave function such that the ensuing point interaction is self-adjoint for any value of n.
引用
收藏
页码:383 / 389
页数:7
相关论文
共 50 条
  • [21] Boundary Conditions for Plate Bending in One-dimensional Hexagonal Quasicrystals
    Yang Gao
    Si-peng Xu
    Bao-sheng Zhao
    Journal of Elasticity, 2007, 86 : 221 - 233
  • [22] QUAZI ONE-DIMENSIONAL MODEL OF THE MAGNETOSPHERIC BOUNDARY IN DISTURBED CONDITIONS
    SAMOKHIN, MV
    GEOMAGNETIZM I AERONOMIYA, 1980, 20 (02): : 294 - 299
  • [23] New Boundary Conditions for One-Dimensional Network Models of Hemodynamics
    S. S. Simakov
    Computational Mathematics and Mathematical Physics, 2021, 61 : 2102 - 2117
  • [24] Boundary conditions for plate bending in one-dimensional hexagonal quasicrystals
    Gao, Yang
    Xu, Si-peng
    Zhao, Bao-sheng
    JOURNAL OF ELASTICITY, 2007, 86 (03) : 221 - 233
  • [25] Fidelity susceptibility of one-dimensional models with twisted boundary conditions
    Thakurathi, Manisha
    Sen, Diptiman
    Dutta, Amit
    PHYSICAL REVIEW B, 2012, 86 (24)
  • [26] Multipartite nonlocality and boundary conditions in one-dimensional spin chains
    Sun, Zhao-Yu
    Wang, Mei
    Wu, Yu-Yin
    Guo, Bin
    PHYSICAL REVIEW A, 2019, 99 (04)
  • [27] Effective slip boundary conditions for arbitrary one-dimensional surfaces
    Asmolov, Evgeny S.
    Vinogradova, Olga I.
    JOURNAL OF FLUID MECHANICS, 2012, 706 : 108 - 117
  • [28] Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems
    Coron, Jean-Michel
    Bastin, Georges
    d'Andrea-Novel, Brigitte
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (03) : 1460 - 1498
  • [29] Chaotic dynamics of one-dimensional systems with periodic boundary conditions
    Kumar, Pankaj
    Miller, Bruce N.
    PHYSICAL REVIEW E, 2014, 90 (06):
  • [30] One-dimensional Diffusion Problem with not Strengthened Regular Boundary Conditions
    Orazov, I.
    Sadybekov, M. A.
    41ST INTERNATIONAL CONFERENCE APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'15), 2015, 1690