Microengineered physiological biomimicry: Organs-on-Chips

被引:486
|
作者
Huh, Dongeun [1 ,2 ,3 ,4 ]
Torisawa, Yu-suke [1 ]
Hamilton, Geraldine A. [1 ]
Kim, Hyun Jung [1 ]
Ingber, Donald E. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Harvard Univ, Wyss Inst Biol Inspired Engn, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Boston, MA 02115 USA
[3] Childrens Hosp Boston, Vasc Biol Program, Dept Pathol, Boston, MA 02115 USA
[4] Childrens Hosp Boston, Vasc Biol Program, Dept Surg, Boston, MA 02115 USA
[5] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
3D CELL-CULTURE; DRUG; ABSORPTION; TOXICITY; TISSUES; MODELS;
D O I
10.1039/c2lc40089h
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Microscale engineering technologies provide unprecedented opportunities to create cell culture microenvironments that go beyond current three-dimensional in vitro models by recapitulating the critical tissue-tissue interfaces, spatiotemporal chemical gradients, and dynamic mechanical microenvironments of living organs. Here we review recent advances in this field made over the past two years that are focused on the development of 'Organs-on-Chips' in which living cells are cultured within microfluidic devices that have been microengineered to reconstitute tissue arrangements observed in living organs in order to study physiology in an organ-specific context and to develop specialized in vitro disease models. We discuss the potential of organs-on-chips as alternatives to conventional cell culture models and animal testing for pharmaceutical and toxicology applications. We also explore challenges that lie ahead if this field is to fulfil its promise to transform the future of drug development and chemical safety testing.
引用
收藏
页码:2156 / 2164
页数:9
相关论文
共 50 条
  • [31] Organs-on-chips: breaking the in vitro impasse
    van der Meer, Andries D.
    van den Berg, Albert
    INTEGRATIVE BIOLOGY, 2012, 4 (05) : 461 - 470
  • [32] An Overview of Organs-on-Chips Based on Deep Learning
    Li, Jintao
    Chen, Jie
    Bai, Hua
    Wang, Haiwei
    Hao, Shiping
    Ding, Yang
    Peng, Bo
    Zhang, Jing
    Li, Lin
    Huang, Wei
    RESEARCH, 2022, 2022
  • [33] Organs-on-chips: Progress, challenges, and future directions
    Low, Lucie A.
    Tagle, Danilo A.
    EXPERIMENTAL BIOLOGY AND MEDICINE, 2017, 242 (16) : 1573 - 1578
  • [34] Organs-on-chips: Advanced engineered living systems
    Liu, Yi
    Bian, Liming
    APL BIOENGINEERING, 2024, 8 (04):
  • [35] Integrated platform for operating and interrogating organs-on-chips
    Ishahak, Matthew
    Birman, Liev
    Carbonero, Daniel
    Hill, Jordan
    Hernandez, Adiel
    Rawal, Siddarth
    Agarwal, Ashutosh
    ANALYTICAL METHODS, 2019, 11 (43) : 5645 - 5651
  • [36] Reverse Engineering Human Pathophysiology with Organs-on-Chips
    Ingber, Donald E.
    CELL, 2016, 164 (06) : 1105 - 1109
  • [37] Accelerating drug discovery via organs-on-chips
    Chan, Chung Yu
    Huang, Po-Hsun
    Guo, Feng
    Ding, Xiaoyun
    Kapur, Vivek
    Mai, John D.
    Yuen, Po Ki
    Huang, Tony Jun
    LAB ON A CHIP, 2013, 13 (24) : 4697 - 4710
  • [38] Organs-on-chips for safety testing and disease modeling
    Ewart, L.
    TOXICOLOGY LETTERS, 2021, 350 : S35 - S36
  • [39] Organs-on-Chips Expand the Boundaries of in Vitro Testing
    Kalia P.
    Genetic Engineering and Biotechnology News, 2021, 41 (07): : 18 - 20
  • [40] Controlling Microenvironments with Organs-on-Chips for Osteoarthritis Modelling
    Ong, Louis Jun Ye
    Fan, Xiwei
    Sun, Antonia Rujia
    Mei, Lin
    Toh, Yi-Chin
    Prasadam, Indira
    CELLS, 2023, 12 (04)