Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

被引:160
|
作者
Wang, Yongxin [1 ]
Kitani, Kris [1 ]
Weng, Xinshuo [1 ]
机构
[1] Carnegie Mellon Univ, Robot Inst, Pittsburgh, PA 15213 USA
来源
2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021) | 2021年
关键词
MULTITARGET;
D O I
10.1109/ICRA48506.2021.9561110
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Object detection and data association are critical components in multi-object tracking (MOT) systems. Despite the fact that the two components are dependent on each other, prior works often design detection and data association modules separately which are trained with separate objectives. As a result, one cannot back-propagate the gradients and optimize the entire MOT system, which leads to sub-optimal performance. To address this issue, recent works simultaneously optimize detection and data association modules under a joint MOT framework, which has shown improved performance in both modules. In this work, we propose a new instance of joint MOT approach based on Graph Neural Networks (GNNs). The key idea is that GNNs can model relations between variable-sized objects in both the spatial and temporal domains, which is essential for learning discriminative features for detection and data association. Through extensive experiments on the MOT15/16/17/20 datasets, we demonstrate the effectiveness of our GNN-based joint MOT approach and show state-of-the-art performance for both detection and MOT tasks.
引用
收藏
页码:13708 / 13715
页数:8
相关论文
共 50 条
  • [11] Detection Recovery in Online Multi-Object Tracking with Sparse Graph Tracker
    Hyun, Jeongseok
    Kang, Myunggu
    Wee, Dongyoon
    Yeung, Dit-Yan
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 4839 - 4848
  • [12] Learned Filters for Object Detection in Multi-object Visual Tracking
    Stamatescu, Victor
    Wong, Sebastien
    McDonnell, Mark D.
    Kearney, David
    AUTOMATIC TARGET RECOGNITION XXVI, 2016, 9844
  • [13] A Closer Look at the Joint Training of Object Detection and Re-Identification in Multi-Object Tracking
    Liang, Tianyi
    Li, Baopu
    Wang, Mengzhu
    Tan, Huibin
    Luo, Zhigang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 267 - 280
  • [14] Joint Detection and Association for End-to-End Multi-object Tracking
    Li, Ye
    Luo, Xiaoyu
    Shi, Junyu
    Wang, Xinzhong
    Yin, Guangqiang
    Wang, Zhiguo
    NEURAL PROCESSING LETTERS, 2023, 55 (09) : 11823 - 11844
  • [15] A METHOD FOR JOINT DETECTION AND RE-IDENTIFICATION IN MULTI-OBJECT TRACKING
    Huang, L.
    Shi, X.
    Xiang, J.
    NEURAL NETWORK WORLD, 2022, 32 (06) : 285 - 300
  • [16] Joint Detection and Association for End-to-End Multi-object Tracking
    Ye Li
    Xiaoyu Luo
    Junyu Shi
    Xinzhong Wang
    Guangqiang Yin
    Zhiguo Wang
    Neural Processing Letters, 2023, 55 : 11823 - 11844
  • [17] JOINT DETECTION, RE-IDENTIFICATION, AND LSTM IN MULTI-OBJECT TRACKING
    Tsai, Wen-Jiin
    Huang, Zih-Jie
    Chung, Chen-En
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [18] Data Association for Multi-Object Tracking via Deep Neural Networks
    Yoon, Kwangjin
    Kim, Du Yong
    Yoon, Young-Chul
    Jeon, Moongu
    SENSORS, 2019, 19 (03)
  • [19] Occlusion-related graph convolutional neural network for multi-object tracking
    Zhang, Yubo
    Zheng, Liying
    Huang, Qingming
    IMAGE AND VISION COMPUTING, 2024, 152
  • [20] GSM: Graph Similarity Model for Multi-Object Tracking
    Liu, Qiankun
    Chu, Qi
    Liu, Bin
    Yu, Nenghai
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 530 - 536