Minimal cover-automata for finite languages

被引:48
|
作者
Câmpeanu, C [1 ]
Sântean, N [1 ]
Yu, S [1 ]
机构
[1] Univ Western Ontario, Middlesex Coll, Dept Comp Sci, London, ON N6A 5B7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
finite languages; deterministic finite automata; cover language; deterministic cover automata;
D O I
10.1016/S0304-3975(00)00292-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A cover-automaton A of a finite language L subset of or equal to Sigma* is a finite deterministic automaton (DFA) that accepts all words in L and possibly other words that are longer than any word in L. A minimal deterministic finite cover automaton (DFCA) of a finite language L usually has a smaller size than a minimal DFA that accept L. Thus, cover automata can be used to reduce the size of the representations of finite languages in practice. In this paper, we describe an efficient algorithm that, for a given DFA accepting a finite language, constructs a minimal deterministic finite cover-automaton of the language. We also give algorithms for the boolean operations on deterministic cover automata, i.e., on the finite languages they represent. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:3 / 16
页数:14
相关论文
共 50 条
  • [41] On the minimality of finite automata and stream X-machines for finite languages
    Ipate, F
    COMPUTER JOURNAL, 2005, 48 (02): : 157 - 167
  • [42] On the minimality of finite automata and stream X-machines for finite languages
    Ipate, F. (fipate@ifsoft.ro), 1600, Oxford University Press (48):
  • [43] Learning regular languages using nondeterministic finite automata
    Garcia, Pedro
    Vazquez de Parga, Manuel
    Alvarez, Gloria I.
    Ruiz, Jose
    IMPLEMENTATION AND APPLICATION OF AUTOMATA, PROCEEDINGS, 2008, 5148 : 92 - +
  • [44] Languages Recognized with Unbounded Error by Quantum Finite Automata
    Yakaryilmaz, Abuzer
    Say, A. C. Cem
    COMPUTER SCIENCE - THEORY AND APPLICATIONS, 2009, 5675 : 356 - 367
  • [45] Latvian Quantum Finite State Automata for Unary Languages
    Mereghetti, Carlo
    Palano, Beatrice
    Raucci, Priscilla
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2024,
  • [46] Improved bounds on the number of automata accepting finite languages
    Domaratzki, M
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2004, 15 (01) : 143 - 161
  • [47] Decision Problems for Probabilistic Finite Automata on Bounded Languages
    Bell, Paul C.
    Halava, Vesa
    Hirvensalo, Mika
    FUNDAMENTA INFORMATICAE, 2013, 123 (01) : 1 - 14
  • [48] Finite automata accepting star-connected languages
    Klunder, Barbara
    IMPLEMENTATION AND APPLICATION OF AUTOMATA, 2007, 4783 : 312 - 313
  • [49] Languages given by finite automata over the unary alphabet
    Czerwinski, Wojciech
    Debski, Maciej
    Gogasz, Tomasz
    Hoi, Gordon
    Jain, Sanjay
    Skrzypczak, Michal
    Stephan, Frank
    Tan, Christopher
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2025, 151
  • [50] BOUNDED-REVERSAL MULTIHEAD FINITE AUTOMATA LANGUAGES
    SUDBOROUGH, IH
    INFORMATION AND CONTROL, 1974, 25 (04): : 317 - 328