ON THE COHOMOLOGY OF THE MAPPING CLASS GROUP OF THE PUNCTURED PROJECTIVE PLANE

被引:0
|
作者
Maldonado, Miguel A. [1 ]
Xicotencatl, Miguel A. [1 ,2 ]
机构
[1] Univ Autonoma Zacatecas, Unidad Acad Matemat, Zacatecas 98000, Zacatecas, Mexico
[2] IPN, Dept Matemat, Ctr Invest & Estudios Avanzados, Mexico City 07360, DF, Mexico
来源
QUARTERLY JOURNAL OF MATHEMATICS | 2020年 / 71卷 / 02期
关键词
BRAID-GROUPS; HOMOLOGY;
D O I
10.1093/qmathj/haz059
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The mapping class group Gamma(k) (N-g) of a non-orientable surface with punctures is studied via classical homotopy theory of configuration spaces. In particular, we obtain a non-orientable version of the Birman exact sequence. In the case of RP2, we analyze the Serre spectral sequence of a fiber bundle F-k (RP2) / Sigma(k) -> X-k -> BSO(3) where X-k is a K (Gamma(k)(RP2), 1) and Gamma(k) (RP2) / Sigma(k) denotes the configuration space of unordered k-tuples of distinct points in RP2. As a consequence, we express the mod-2 cohomology of Gamma(k) (RP2) in terms of that of F-k (RP2) / Sigma(k).
引用
收藏
页码:539 / 555
页数:17
相关论文
共 50 条