DUFFING-VAN DER POL-TYPE OSCILLATOR SYSTEM AND ITS FIRST INTEGRALS

被引:9
|
作者
Feng, Zhaosheng [1 ]
Gao, Guangyue [1 ]
Cui, Jing [1 ]
机构
[1] Univ Texas Pan Amer, Dept Math, Edinburg, TX 78539 USA
关键词
First integral; Duffing oscillator; van der Pol oscillator; diffeomorphism; Lie symmetry method; Lie point symmetry; prolonged infinitesimal operator; parametric solution; ORDINARY DIFFERENTIAL-EQUATIONS; DE-VRIES EQUATION; HELMHOLTZ OSCILLATOR; INTEGRABILITY; SYMMETRIES;
D O I
10.3934/cpaa.2011.10.1377
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, under certain parametric conditions we are concerned with the first integrals of the Duffing-van der Pol-type oscillator system, which include the van der Pol oscillator and the damped Duffing oscillator etc as particular cases. We apply the Lie symmetry method to find two nontrivial infinitesimal generators and use them to construct canonical variables. Through the inverse transformations we obtain the first integrals of the original oscillator system under the given parametric conditions, and some particular cases such as the damped Duffing equation and the van der Pol oscillator system are discussed accordingly.
引用
收藏
页码:1377 / 1392
页数:16
相关论文
共 50 条
  • [41] Solving Duffing-Van der Pol Oscillator Equations of Fractional Order by an Accurate Technique
    Attia, Nourhane
    Seba, Djamila
    Akgul, Ali
    Nour, Abdelkader
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2021, 7 (03): : 1480 - 1487
  • [42] Sufficient conditions for the existence of periodic solutions of the extended Duffing-Van der Pol oscillator
    Euzebio, Rodrigo D.
    Llibre, Jaume
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (08) : 1358 - 1382
  • [43] Bursting Oscillation and Its Mechanism of a Generalized Duffing-Van der Pol System with Periodic Excitation
    Qian, Youhua
    Zhang, Danjin
    Lin, Bingwen
    COMPLEXITY, 2021, 2021
  • [44] Reply to Comment on 'Solution of the Duffing-van der Pol oscillator equation by the differential transform method'
    Mukherjee, Supriya
    PHYSICA SCRIPTA, 2011, 84 (03)
  • [45] Suppressing chaos through optimum correction of the control parameters in a Duffing-van der Pol oscillator
    Talagaev, Yu. V.
    Tarakanov, A. F.
    TECHNICAL PHYSICS LETTERS, 2006, 32 (12) : 1043 - 1046
  • [46] A Kushner approach for small random perturbations of the Duffing-van der Pol system
    Sharma, Shambhu N.
    AUTOMATICA, 2009, 45 (04) : 1097 - 1099
  • [47] Effect of Gaussian white noise on the dynamical behaviors of an extended Duffing-Van der Pol oscillator
    Yang, Xiaoli
    Xu, Wei
    Sun, Zhongkui
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (09): : 2587 - 2600
  • [48] A phenomenological model of EEG based on the dynamics of a stochastic Duffing-van der Pol oscillator network
    Ghorbanian, P.
    Ramakrishnan, S.
    Whitman, A.
    Ashrafiuon, H.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2015, 15 : 1 - 10
  • [49] NEIMARK BIFURCATIONS OF A GENERALIZED DUFFING-VAN DER POL OSCILLATOR WITH NONLINEAR FRACTIONAL ORDER DAMPING
    Leung, A. Y. T.
    Yang, H. X.
    Zhu, P.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (11):
  • [50] Suppressing chaos through optimum correction of the control parameters in a duffing-van der pol oscillator
    Yu. V. Talagaev
    A. F. Tarakanov
    Technical Physics Letters, 2006, 32 : 1043 - 1046