Embeddings of minimal non-abelian p-groups

被引:1
|
作者
Abbaspour, Mohammad Hassan [1 ]
Behravesh, Houshang [2 ]
Ghaffarzadeh, Ghodrat [1 ]
机构
[1] Islamic Azad Univ, Khoy Branch, Tehran, Iran
[2] Univ Urmia, Dept Math, Orumiyeh, Iran
关键词
Quasi-permutation representations; Minimal non-abelian p-groups; Character theory; QUASI-PERMUTATION REPRESENTATIONS;
D O I
10.1016/j.amc.2011.01.054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. For a given finite group G, let p(G) denote the minimal degree of a faithful representation of G by permutation matrices, and let c(G) denote the minimal degree of a faithful representation of G by quasi-permutation matrices. See [4]. It is easy to see that c(G) is a lower bound for p(G). Behravesh [H. Behravesh, The minimal degree of a faithful quasi-permutation representation of an abelian group, Glasg. Math. J. 39 (1) (1997) 51-57] determined c(G) for every finite abelian group G and also [H. Behravesh, Quasi-permutation representations of p-groups of class 2, J. Lond. Math. Soc. (2) 55 (2) (1997) 251-260] gave the algorithm of c(G) for each finite group G. In this paper, we first improve this algorithm and then determine c(G) and p(G) for an arbitrary minimal non-abelian p-group G. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:658 / 661
页数:4
相关论文
共 50 条
  • [21] On the order of Schur multiplier of non-abelian p-groups
    Niroomand, Peyman
    JOURNAL OF ALGEBRA, 2009, 322 (12) : 4479 - 4482
  • [22] Finite p-Groups Whose Subgroups of Given Order Are Isomorphic and Minimal Non-abelian
    Zhang, Qinhai
    ALGEBRA COLLOQUIUM, 2019, 26 (01) : 1 - 8
  • [23] The non-abelian tensor square of p-groups of order p(4)
    Chorbanzadeh, Taleea Jalaeeyan
    Parvizi, Mohsen
    Niroomand, Peyman
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2018, 11 (06)
  • [24] Non-Abelian tensor square and related constructions of p-groups
    Bastos, R.
    de Melo, E.
    Goncalves, N.
    Nunes, R.
    ARCHIV DER MATHEMATIK, 2020, 114 (05) : 481 - 490
  • [25] CHARACTERIZATION OF FINITE p-GROUPS BY THEIR NON-ABELIAN TENSOR SQUARE
    Jafari, S. H.
    Saeedi, F.
    Khamseh, E.
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (05) : 1954 - 1963
  • [26] Non-Abelian tensor square and related constructions of p-groups
    R. Bastos
    E. de Melo
    N. Gonçalves
    R. Nunes
    Archiv der Mathematik, 2020, 114 : 481 - 490
  • [27] Iterated effective embeddings of abelian p-groups
    Downey, Rod
    Melnikov, Alexander G.
    Ng, Keng Meng
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2014, 24 (07) : 1055 - 1084
  • [28] P-GROUPS WITH NON-ABELIAN AUTOMORPHISM-GROUPS AND ALL AUTOMORPHISMS CENTRAL
    MALONE, JJ
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1984, 29 (01) : 35 - 37
  • [29] On the Structure of the Augmentation Quotient Group for Some Non-abelian p-groups
    ZHAO HUI-FANG
    NAN JI-ZHU
    Du Xian-kun
    Communications in Mathematical Research, 2017, 33 (04) : 289 - 303
  • [30] The exponent of the non-abelian tensor square and related constructions of p-groups
    Bastos, Raimundo
    de Melo, Emerson
    Goncalves, Nathalia
    Monetta, Carmine
    MATHEMATISCHE NACHRICHTEN, 2022, 295 (07) : 1264 - 1278