Finite time singularities for a class of generalized surface quasi-geostrophic equations

被引:20
|
作者
Dong, Hongjie [1 ]
Li, Dong [2 ]
机构
[1] Brown Univ, Dept Appl Math, Providence, RI 02912 USA
[2] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
关键词
Mellin transform; finite-time singularities; quasi-geostrophic equations; global well-posedness;
D O I
10.1090/S0002-9939-08-09328-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and study a class of generalized surface quasi-geostrophic equations. We show that in the inviscid case certain radial solutions develop gradient blow-up in finite time. In the critical dissipative case, the equations are globally well-posed with arbitrary H-1 initial data.
引用
收藏
页码:2555 / 2563
页数:9
相关论文
共 50 条
  • [22] ON NONTRADITIONAL QUASI-GEOSTROPHIC EQUATIONS
    Lucas, Carine
    McWilliams, James C.
    Rousseau, Antoine
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (02): : 427 - 442
  • [23] Oscillatory damping in long-time evolution of the surface quasi-geostrophic equations with generalized viscosity: a numerical study
    Ohkitani, Koji
    Sakajo, Takashi
    NONLINEARITY, 2010, 23 (12) : 3029 - 3051
  • [24] Decay of Fourier modes of solutions to the dissipative surface quasi-geostrophic equations on a finite domain
    Chernov, Nikolai
    Li, Dong
    CHAOS SOLITONS & FRACTALS, 2012, 45 (9-10) : 1192 - 1200
  • [25] Karman vortex street for the generalized surface quasi-geostrophic equation
    Cao, Daomin
    Qin, Guolin
    Zhan, Weicheng
    Zou, Changjun
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (06)
  • [26] SURFACE QUASI-GEOSTROPHIC DYNAMICS
    HELD, IM
    PIERREHUMBERT, RT
    GARNER, ST
    SWANSON, KL
    JOURNAL OF FLUID MECHANICS, 1995, 282 : 1 - 20
  • [27] On the five Lagrange points in a generalized surface quasi-geostrophic flow
    Zhang, Mei
    Zou, Changjun
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 78
  • [28] POINT VORTICES FOR INVISCID GENERALIZED SURFACE QUASI-GEOSTROPHIC MODELS
    Geldhauser, Carina
    Romito, Marco
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (07): : 2583 - 2606
  • [29] Traditional quasi-geostrophic modes and surface quasi-geostrophic solutions in the Southwestern Atlantic
    Rocha, Cesar B.
    Tandon, Amit
    da Silveira, Ilson C. A.
    Lima, Jose Antonio M.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2013, 118 (05) : 2734 - 2745
  • [30] On the two dimensional quasi-geostrophic equations
    Ju, N
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (03) : 897 - 926