Finite time singularities for a class of generalized surface quasi-geostrophic equations

被引:20
|
作者
Dong, Hongjie [1 ]
Li, Dong [2 ]
机构
[1] Brown Univ, Dept Appl Math, Providence, RI 02912 USA
[2] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
关键词
Mellin transform; finite-time singularities; quasi-geostrophic equations; global well-posedness;
D O I
10.1090/S0002-9939-08-09328-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and study a class of generalized surface quasi-geostrophic equations. We show that in the inviscid case certain radial solutions develop gradient blow-up in finite time. In the critical dissipative case, the equations are globally well-posed with arbitrary H-1 initial data.
引用
收藏
页码:2555 / 2563
页数:9
相关论文
共 50 条
  • [1] Regularity results for a class of generalized surface quasi-geostrophic equations
    Lazar, Omar
    Xue, Liutang
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 130 : 200 - 250
  • [2] On the regularity of a class of generalized quasi-geostrophic equations
    Miao, Changxing
    Xue, Liutang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (10) : 2789 - 2821
  • [3] Generalized surface quasi-geostrophic equations with singular velocities
    Chae, Dongho
    Constantin, Peter
    Cordoba, Diego
    Gancedo, Francisco
    Wu, Jiahong
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (08) : 1037 - 1066
  • [4] Geometric analysis of the generalized surface quasi-geostrophic equations
    Bauer, Martin
    Heslin, Patrick
    Misiolek, Gerard
    Preston, Stephen C.
    MATHEMATISCHE ANNALEN, 2024, 390 (03) : 4639 - 4655
  • [5] Finite time singularities in a 1D model of the quasi-geostrophic equation
    Chae, D
    Córdoba, A
    Córdoba, D
    Fontelos, MA
    ADVANCES IN MATHEMATICS, 2005, 194 (01) : 203 - 223
  • [6] LONG TIME LOCALIZATION OF MODIFIED SURFACE QUASI-GEOSTROPHIC EQUATIONS
    Cavallaro, Guido
    Garra, Roberto
    Marchioro, Carlo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (09): : 5135 - 5148
  • [7] Gevrey regularity for the subcritical dissipative generalized surface quasi-geostrophic equations
    Deng, Wen
    Paicu, Marius
    MATHEMATISCHE ZEITSCHRIFT, 2025, 309 (04)
  • [8] REGULARITY CRITERIA FOR THE GENERALIZED MAGNETOHYDRODYNAMIC EQUATIONS AND THE QUASI-GEOSTROPHIC EQUATIONS
    Fan, Jishan
    Gao, Hongjun
    Nakamura, Gen
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (03): : 1059 - 1073
  • [9] On the V-states for the Generalized Quasi-Geostrophic Equations
    Zineb Hassainia
    Taoufik Hmidi
    Communications in Mathematical Physics, 2015, 337 : 321 - 377
  • [10] On the V-states for the Generalized Quasi-Geostrophic Equations
    Hassainia, Zineb
    Hmidi, Taoufik
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 337 (01) : 321 - 377