Phosphorus speciation in dicalcium silicate phases: Application to the basic oxygen furnace (BOF) slag

被引:17
|
作者
Duee, Cedric [1 ]
Bourgel, Christine [1 ]
Veron, Emmanuel [1 ]
Allix, Mathieu [1 ]
Fayon, Franck [1 ]
Bodenan, F. [2 ]
Poirier, Jacques [1 ]
机构
[1] Univ Orleans, CNRS, CEMHTI UPR3079, F-45071 Orleans, France
[2] Bur Rech Geol & Minieres, F-45060 Orleans 2, France
关键词
Structural characterization; Cement; Ca2SiO4; Phosphorus; Waste management; CHEMICAL-SHIFT ANISOTROPIES; CALCIUM SILICATES; CRYSTAL-STRUCTURE; NMR; CEMENT; POLYMORPHS; HYDRATION;
D O I
10.1016/j.cemconres.2015.03.012
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The recycling of basic oxygen furnace slag in the steelmaking process is currently limited by its phosphorus content. Phosphorus is known to induce remarkable phase segregation in the slag microstructure and is only present in phases belonging to the C2S-C3P solid solution, the iron-containing phases being left free of phosphorus. The mechanism of phosphorus insertion into calcium silicate structures was studied by a combination of TEM, XRD and Si-29 and P-31 solid-state NMR. Upon P2O5 addition, [PO4](3-) units are incorporated into the dicalcium silicate structure by substituting [SiO4](4-) groups, charge balance being maintained by creation of calcium vacancies. This substitution leads to a stabilization of the beta- and alpha-Ca2SiO4 phases at room temperature and results in the formation of more polymerized calcium silicate secondary phases. The obtained P-substituted alpha-Ca2SiO4 compounds belong to the Ca2-x/2Si1-xPxO4 solid solution and exhibit lattice parameters similar to those of the calcium phosphosilicate Ca-15(PO4)(2)(SiO4)(6) Phase. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:207 / 214
页数:8
相关论文
共 50 条
  • [41] Properties of hydraulic paste of basic oxygen furnace slag
    Belhadj, Essia
    Diliberto, Cecile
    Lecomte, Andre
    [J]. CEMENT & CONCRETE COMPOSITES, 2014, 45 : 15 - 21
  • [42] Hydration properties of basic oxygen furnace steel slag
    Wang Qiang
    Yan Peiyu
    [J]. CONSTRUCTION AND BUILDING MATERIALS, 2010, 24 (07) : 1134 - 1140
  • [43] PETROGRAPHIC EXAMINATION OF SLAG FORMATION IN BASIC OXYGEN FURNACE
    YUGOV, PI
    RYLNIKOV.AG
    LEBEDEVA, SB
    [J]. STEEL IN THE USSR, 1972, 2 (06): : 440 - 442
  • [44] APPLICABILITY OF BASIC OXYGEN FURNACE SLAG AS A CONCRETE AGGREGATE
    KAWAMURA, M
    TORII, K
    HASABA, S
    NICHO, N
    ODA, K
    [J]. JOURNAL OF THE AMERICAN CONCRETE INSTITUTE, 1983, 80 (04): : 350 - 351
  • [45] Modification of Basic Oxygen Furnace Slag for Cement Manufacturing
    João B. Ferreira Neto
    Catia Fredericci
    João O. G. Faria
    Fabiano F. Chotoli
    Tiago R. Ribeiro
    Antônio Malynowskyj
    Andre L. N. Silva
    Valdecir A. Quarcioni
    Andre A. Lotto
    [J]. Journal of Sustainable Metallurgy, 2017, 3 : 720 - 728
  • [46] A Bogue approach applied to basic oxygen furnace slag
    Zepper, J. C. O.
    van der Laan, S. R.
    Schollbach, K.
    Brouwers, H. J. H.
    [J]. CEMENT AND CONCRETE RESEARCH, 2024, 175
  • [47] Modification of Basic Oxygen Furnace Slag for Cement Manufacturing
    Ferreira Neto, Joao B.
    Fredericci, Catia
    Faria, Joao O. G.
    Chotoli, Fabiano F.
    Ribeiro, Tiago R.
    Malynowskyj, Antonio
    Silva, Andre L. N.
    Quarcioni, Valdecir A.
    Lotto, Andre A.
    [J]. JOURNAL OF SUSTAINABLE METALLURGY, 2017, 3 (04) : 720 - 728
  • [48] Application of reclaimed basic oxygen furnace slag asphalt pavement in road base aggregate
    Chen, Shih-Huang
    Lin, Deng-Fong
    Luo, Huan-Lin
    Lin, Zi-Yang
    [J]. CONSTRUCTION AND BUILDING MATERIALS, 2017, 157 : 647 - 653
  • [49] Utilization of Basic Oxygen Furnace Slag in Geopolymeric Coating for Passive Radiative Cooling Application
    Wu, Chia-Ho
    Huang, Chih-Hong
    Li, Yeou-Fong
    Lee, Wei-Hao
    Cheng, Ta-Wui
    [J]. SUSTAINABILITY, 2020, 12 (10)
  • [50] Environmental application of basic oxygen furnace slag for the removal of heavy metals from leachates
    Francisca, Franco M.
    Glatstein, Daniel A.
    [J]. JOURNAL OF HAZARDOUS MATERIALS, 2020, 384