An InGaZnO Charge-Trapping Nonvolatile Memory With the Same Structure of a Thin-Film Transistor

被引:4
|
作者
Zhang, C. [1 ]
Li, D. [1 ]
Lai, P. T. [2 ]
Huang, X. D. [1 ]
机构
[1] Southeast Univ, Key Lab MEMS, Minist Educ, Sch Elect Sci & Engn, Nanjing 210096, Peoples R China
[2] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China
关键词
InGaZnO (IGZO); nonvolatile memory (NVM); thin-film transistor (TFT); charge trapping; metal-hydroxyl; PERFORMANCE;
D O I
10.1109/LED.2021.3131715
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new charge-trapping nonvolatile memory (NVM) with a fully same structure to thin-film transistor (TFT) is investigated. Different from the conventional NVM with block layer/charge-trapping layer/tunneling layer stack for charge storage, this NVM uses the metal-hydroxyl (M-OH) defect at the back channel for charge storage, which forms by the reaction of IGZO with moisture and acts as acceptor-like deep-level traps. Devices with various M-OH contents are prepared by changing thermal treatment. The device with high M-OH content displays good NVM performance in terms of its large memory window (1.5 V at +/- 10 V, 1s), high program/erase speeds (1.1 V at 10 V, 1 ms) and good data retention (78.9% retention after 10 years); for comparison, the device with low M-OH content exhibits good TFT characteristics in terms of its small sub-threshold swing (226 mV/dec), high carrier mobility (8.1 cm(2)/V.s) and good electrical stability (memory window similar to 0.2 V at +/- 10 V, 1s). Since the NVM and TFT have the same structure, both the devices can be simultaneously prepared combined with an extra treatment to modulate the M-OH content at the back channel, thus contributing to system-on-panel development.
引用
收藏
页码:32 / 35
页数:4
相关论文
共 50 条
  • [41] Nonvolatile Memory Effect in Organic Thin-Film Transistor Based on Aluminum Nanoparticle Floating Gate
    Wang Wei
    Ma Dong-Ge
    CHINESE PHYSICS LETTERS, 2010, 27 (01)
  • [42] Formation of ZnO Nanoparticles by Atomic Layer Deposition for the Nonvolatile Memory Thin-Film Transistor Applications
    Seo, Gi-Ho
    Yun, Da-Jeong
    Lee, Won-Ho
    Kim, So-Jung
    Yoon, Sung-Min
    THIN FILM TRANSISTORS 13 (TFT 13), 2016, 75 (10): : 241 - 245
  • [43] SiNx charge-trap nonvolatile memory based on ZnO thin-film transistors
    Kim, Eunkyeom
    Kim, Youngill
    Kim, Do Han
    Lee, Kyoungmi
    Parsons, Gregory N.
    Park, Kyoungwan
    APPLIED PHYSICS LETTERS, 2011, 99 (11)
  • [44] Unique property of a-InGaZnO/Ag Interface on Thin-Film Transistor
    Ueoka, Yoshihiro
    Ishikawa, Yasuaki
    Bermundo, Juan Paolo
    Yamazaki, Haruka
    Urakawa, Satoshi
    Osada, Yukihiro
    Horita, Masahiro
    Uraoka, Yukiharu
    PROCEEDINGS OF 2013 TWENTIETH INTERNATIONAL WORKSHOP ON ACTIVE-MATRIX FLATPANEL DISPLAYS AND DEVICES (AM-FPD 13): TFT TECHNOLOGIES AND FPD MATERIALS, 2013, : 37 - 38
  • [45] Pi-shape gate polycrystalline silicon thin-film transistor for nonvolatile memory applications
    Chen, Shih-Ching
    Chang, Ting-Chang
    Liu, Po-Tsun
    Wu, Yung-Chun
    Ko, Chin-Cheng
    Yang, Sidney
    Feng, Li-Wei
    Sze, S. M.
    Chang, Chun-Yen
    Lien, Chen-Hsin
    APPLIED PHYSICS LETTERS, 2007, 91 (21)
  • [46] Effect of contact material on amorphous InGaZnO thin-film transistor characteristics
    Ueoka, Yoshihiro
    Ishikawa, Yasuaki
    Bermundo, Juan Paolo
    Yamazaki, Haruka
    Urakawa, Satoshi
    Osada, Yukihiro
    Horita, Masahiro
    Uraoka, Yukiharu
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2014, 53 (03)
  • [48] Improved Characteristics of InGaZnO Thin-Film Transistor by Using Fluorine Implant
    Qian, L. X.
    Tang, W. M.
    Lai, P. T.
    ECS SOLID STATE LETTERS, 2014, 3 (08) : P87 - P90
  • [49] Y-Doped BaTiO3 as a Charge-Trapping Layer for Nonvolatile Memory Applications
    Shi, R. P.
    Huang, X. D.
    Sin, Johnny K. O.
    Lai, P. T.
    IEEE ELECTRON DEVICE LETTERS, 2016, 37 (12) : 1555 - 1558
  • [50] Reading Operation and Cell Scalability of Nonvolatile Schottky barrier Multibit Charge-Trapping Memory Cells
    Shih, Chun-Hsing
    Liang, Ji-Ting
    Luo, Yan-Xiang
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2012, 59 (06) : 1599 - 1606