A V-curve criterion for the parameter optimization of the Tikhonov regularization inversion algorithm for particle sizing

被引:8
|
作者
Liu, Wei [1 ]
Sun, Xianming [1 ]
Shen, Jin [1 ]
机构
[1] Shandong Univ Technol, Sch Elect & Elect Engn, Zibo 255099, Peoples R China
来源
OPTICS AND LASER TECHNOLOGY | 2012年 / 44卷 / 01期
基金
美国国家科学基金会;
关键词
Dynamic light scattering; Inversion algorithm; Optimum regularization parameter; LIGHT-SCATTERING DATA; SIZE DISTRIBUTION; POLYDISPERSITY; CUMULANTS; LATEX;
D O I
10.1016/j.optlastec.2011.04.019
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The regularization parameter plays an important role in applying the Tikhonov regularization method to recover the particle size distribution from dynamic light scattering experiments. The so-called V-curve, which is a plot of the product of the residual norm and the norm of the recovered distribution versus all valid regularization parameters, can be used to estimate the result of inversion. Numerical simulation demonstrated that the resultant V-curve can be applied to optimize the regularization parameter. The regularization parameter is optimized corresponding to the minimum value of the V-curve. Simulation and experimental results show that stable distributions can be retrieved using the Tikhonov regularization with optimum parameter for unimodal particle size distributions. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [31] Multi-parameter regularization method for particle sizing of forward light scattering
    Lin, Chengjun
    Shen, Jianqi
    Wang, Tian'en
    JOURNAL OF MODERN OPTICS, 2017, 64 (08) : 787 - 798
  • [32] Regularization Particle Size Inversion of PCS Based on Fast Algorithm
    Zhang, Yanmin
    Li, Qinghua
    Wang, Lipeng
    Qi, Xingguang
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 5641 - 5645
  • [33] 3D constrained inversion of gravity data based on the Extrapolation Tikhonov regularization algorithm
    Liu Yin-Ping
    Wang Zhu-Wen
    Du Xiao-Juan
    Liu Jing-Hua
    Xu Jia-Shu
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2013, 56 (05): : 1650 - 1659
  • [34] A genetic algorithm for lot sizing optimization with a capacity loading criterion
    Duda, Jerzy
    Osyczka, Andrzej
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 3790 - 3795
  • [35] Optimization of Lucy-Richardson Algorithm Using Modified Tikhonov Regularization for Image Deblurring
    Khetkeeree, Suphongsa
    2019 4TH INTERNATIONAL CONFERENCE ON COMMUNICATION, IMAGE AND SIGNAL PROCESSING (CCISP 2019), 2020, 1438
  • [36] Dynamic light scattering inversion based on Tikhonov regularization and parameter-optimized generalized regression neural network
    Wang, Zongzheng
    Wang, Yajing
    Shen, Jin
    Liu, Wei
    Yuan, Xi
    Fu, Xiaojun
    Zhang, Gaoge
    POWDER TECHNOLOGY, 2022, 409
  • [37] Solution of the LIMM equation by the Polynomial Regularization Method and the L-curve algorithm for selection of the regularization parameter
    Lang, SB
    Fleming, R
    Pawlowski, T
    2004 ANNUAL REPORT CONFERENCE ON ELECTRICAL INSULATION AND DIELECTRIC PHENOMENA, 2004, : 198 - 201
  • [38] Parameter analysis of particle swarm optimization algorithm
    Yao, Yao-Zhong
    Xu, Yu-Ru
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2007, 28 (11): : 1242 - 1246
  • [39] Parameter Evolution for a Particle Swarm Optimization Algorithm
    Zhou, Aimin
    Zhang, Guixu
    Konstantinidis, Andreas
    ADVANCES IN COMPUTATION AND INTELLIGENCE, 2010, 6382 : 33 - +
  • [40] Gravity inversion based on hyper-parameter regularization inversion via iteration splitting bregman algorithm
    Cao, Shujin
    Zhu, Ziqiang
    Lu, Guangyin
    Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2015, 46 (05): : 1699 - 1706