Background modeling and subtraction of dynamic scenes

被引:0
|
作者
Monnet, A [1 ]
Mittal, A [1 ]
Paragios, N [1 ]
Ramesh, V [1 ]
机构
[1] Siemens Corp Res, Real Time Vis & Modeling, Princeton, NJ 08540 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Background modeling and subtraction is a core component in motion analysis. The central idea behind such module is to create a probabilistic representation of the static scene that is compared with the current input to perform subtraction. Such approach is efficient when the scene to be modeled refers to a static structure with limited perturbation. In this paper, we address the problem of modeling dynamic scenes where the assumption of a static background is not valid. Waving trees, beaches, escalators, natural scenes with rain or snow are examples. Inspired by the work proposed in [4], we propose an on-line auto-regressive model to capture and predict the behavior of such scenes. Towards detection of events we introduce a new metric that is based on a state-driven comparison between the prediction and the actual frame. Promising results demonstrate the potentials of the proposed framework.
引用
收藏
页码:1305 / 1312
页数:8
相关论文
共 50 条
  • [31] An Experiment for Background Subtraction in a Dynamic Scene
    Lin, Ting-Yuan
    Yeh, Jeng-Sheng
    Wu, Fu-Che
    Chuang, Yung-Yu
    Dellinger, Andrew
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, 11489 : 420 - 425
  • [32] MODELING BACKGROUND ACTIVITY FOR BEHAVIOR SUBTRACTION
    Jodoin, Pierre-Marc
    Konrad, Janusz
    Saligrama, Venkatesh
    [J]. 2008 SECOND ACM/IEEE INTERNATIONAL CONFERENCE ON DISTRIBUTED SMART CAMERAS, 2008, : 87 - +
  • [33] Background subtraction: separating the modeling and the inference
    Narayana, Manjunath
    Hanson, Allen
    Learned-Miller, Erik G.
    [J]. MACHINE VISION AND APPLICATIONS, 2014, 25 (05) : 1163 - 1174
  • [34] Background modeling and subtraction by codebook construction
    Kim, K
    Chalidabhongse, TH
    Harwood, D
    Davis, L
    [J]. ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 3061 - 3064
  • [35] Background subtraction: separating the modeling and the inference
    Manjunath Narayana
    Allen Hanson
    Erik G. Learned-Miller
    [J]. Machine Vision and Applications, 2014, 25 : 1163 - 1174
  • [36] A non-parametric pixel-based background modeling for dynamic scenes
    Armanfard, N.
    Komeili, M.
    Valizade, M.
    Kabir, E.
    Jalili, S.
    [J]. 2009 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTATIONAL TOOLS FOR ENGINEERING APPLICATIONS, 2009, : 369 - 373
  • [37] Background estimation for dynamic video scenes
    Harasse, Sebastien
    Bonnaud, Laurent
    Desvignes, Michel
    [J]. IECON 2006 - 32ND ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS, VOLS 1-11, 2006, : 2958 - +
  • [38] Optimal Background Modeling for Cluttered Scenes
    Shahbaz, Ajmal
    Jo, Kang-Hyun
    [J]. IECON 2017 - 43RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2017, : 5240 - 5244
  • [39] Spatiotemporal local compact binary pattern for background subtraction in complex scenes
    He, Wei
    Ko, Hak-Lim
    Kim, Yong Kwan
    Wu, Jianhui
    Zhang, Guoyun
    Qi, Qi
    Tu, Bing
    Ou, Xianfeng
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (22) : 31415 - 31439
  • [40] Spatiotemporal local compact binary pattern for background subtraction in complex scenes
    Wei He
    Hak-Lim Ko
    Yong Kwan Kim
    Jianhui Wu
    Guoyun Zhang
    Qi Qi
    Bing Tu
    Xianfeng Ou
    [J]. Multimedia Tools and Applications, 2019, 78 : 31415 - 31439