Computational Discovery of TTF Molecules with Deep Generative Models

被引:4
|
作者
Yakubovich, Alexander [1 ]
Odinokov, Alexey [1 ]
Nikolenko, Sergey [2 ,3 ]
Jung, Yongsik [4 ]
Choi, Hyeonho [4 ]
机构
[1] Samsung Elect, Samsung R&D Inst Russia SRR, Moscow, Russia
[2] Steklov Inst Math St Petersburg, St Petersburg, Russia
[3] ISP RAS Res Ctr Trusted Artificial Intelligence, Moscow, Russia
[4] Samsung Elect, Samsung Adv Inst Technol SAIT, Gyeonggi, South Korea
来源
FRONTIERS IN CHEMISTRY | 2021年 / 9卷
关键词
generative model; OLED; organic light emitting devices; display; computational materials discovery; quantum chemistry; autoencoder; molecular database screening; TRIPLET-TRIPLET ANNIHILATION; ULTRAVIOLET-ABSORPTION; EXCITED-STATES; UP-CONVERSION; DESIGN; TRANSITIONS; SPECTROSCOPY; PYRAZINE; LIGHT;
D O I
10.3389/fchem.2021.800133
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present a computational workflow based on quantum chemical calculations and generative models based on deep neural networks for the discovery of novel materials. We apply the developed workflow to search for molecules suitable for the fusion of triplet-triplet excitations (triplet-triplet fusion, TTF) in blue OLED devices. By applying generative machine learning models, we have been able to pinpoint the most promising regions of the chemical space for further exploration. Another neural network based on graph convolutions was trained to predict excitation energies; with this network, we estimate the alignment of energy levels and filter molecules before running time-consuming quantum chemical calculations. We present a comprehensive computational evaluation of several generative models, choosing a modification of the Junction Tree VAE (JT-VAE) as the best one in this application. The proposed approach can be useful for computer-aided design of materials with energy level alignment favorable for efficient energy transfer, triplet harvesting, and exciton fusion processes, which are crucial for the development of the next generation OLED materials.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Probabilistic generative transformer language models for generative design of molecules
    Lai Wei
    Nihang Fu
    Yuqi Song
    Qian Wang
    Jianjun Hu
    Journal of Cheminformatics, 15
  • [32] Deep Verifier Networks: Verification of Deep Discriminative Models with Deep Generative Models
    Che, Tong
    Liu, Xiaofeng
    Li, Site
    Ge, Yubin
    Zhang, Ruixiang
    Xiong, Caiming
    Bengio, Yoshua
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 7002 - 7010
  • [33] Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models
    Rosa Lundbye Allesøe
    Agnete Troen Lundgaard
    Ricardo Hernández Medina
    Alejandro Aguayo-Orozco
    Joachim Johansen
    Jakob Nybo Nissen
    Caroline Brorsson
    Gianluca Mazzoni
    Lili Niu
    Jorge Hernansanz Biel
    Cristina Leal Rodríguez
    Valentas Brasas
    Henry Webel
    Michael Eriksen Benros
    Anders Gorm Pedersen
    Piotr Jaroslaw Chmura
    Ulrik Plesner Jacobsen
    Andrea Mari
    Robert Koivula
    Anubha Mahajan
    Ana Vinuela
    Juan Fernandez Tajes
    Sapna Sharma
    Mark Haid
    Mun-Gwan Hong
    Petra B. Musholt
    Federico De Masi
    Josef Vogt
    Helle Krogh Pedersen
    Valborg Gudmundsdottir
    Angus Jones
    Gwen Kennedy
    Jimmy Bell
    E. Louise Thomas
    Gary Frost
    Henrik Thomsen
    Elizaveta Hansen
    Tue Haldor Hansen
    Henrik Vestergaard
    Mirthe Muilwijk
    Marieke T. Blom
    Leen M. ‘t Hart
    Francois Pattou
    Violeta Raverdy
    Soren Brage
    Tarja Kokkola
    Alison Heggie
    Donna McEvoy
    Miranda Mourby
    Jane Kaye
    Nature Biotechnology, 2023, 41 : 399 - 408
  • [34] Author Correction: Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations
    Payel Das
    Tom Sercu
    Kahini Wadhawan
    Inkit Padhi
    Sebastian Gehrmann
    Flaviu Cipcigan
    Vijil Chenthamarakshan
    Hendrik Strobelt
    Cicero dos Santos
    Pin-Yu Chen
    Yi Yan Yang
    Jeremy P. K. Tan
    James Hedrick
    Jason Crain
    Aleksandra Mojsilovic
    Nature Biomedical Engineering, 2021, 5 : 942 - 942
  • [35] Deterministic Generative Models for Fast Feature Discovery
    Machiel Westerdijk
    David Barber
    Wim Wiegerinck
    Data Mining and Knowledge Discovery, 2001, 5 : 337 - 363
  • [36] Deterministic generative models for fast feature discovery
    Westerdijk, M
    Barber, D
    Wiegerinck, W
    DATA MINING AND KNOWLEDGE DISCOVERY, 2001, 5 (04) : 337 - 363
  • [37] From Generative Models to Generative Passages: A Computational Approach to (Neuro) Phenomenology
    Ramstead, Maxwell J. D.
    Seth, Anil K.
    Hesp, Casper
    Sandved-Smith, Lars
    Mago, Jonas
    Lifshitz, Michael
    Pagnoni, Giuseppe
    Smith, Ryan
    Dumas, Guillaume
    Lutz, Antoine
    Friston, Karl
    Constant, Axel
    REVIEW OF PHILOSOPHY AND PSYCHOLOGY, 2022, 13 (04) : 829 - 857
  • [38] Generating 3D molecules conditional on receptor binding sites with deep generative models
    Ragoza, Matthew
    Masuda, Tomohide
    Koes, David Ryan
    CHEMICAL SCIENCE, 2022, 13 (09) : 2701 - 2713
  • [39] Deep generative models for peptide design
    Wan, Fangping
    Kontogiorgos-Heintz, Daphne
    de la Fuente-Nunez, Cesar
    DIGITAL DISCOVERY, 2022, 1 (03): : 195 - 208
  • [40] An Architecture for Deep, Hierarchical Generative Models
    Bachman, Philip
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29