Inverted Solutions of KdV-Type and Gardner Equations

被引:1
|
作者
Karczewska, A. [1 ]
Rozmej, P. [2 ]
机构
[1] Univ Zielona Gora, Inst Math, Szafrana 4a, PL-65246 Zielona Gora, Poland
[2] Univ Zielona Gora, Inst Phys, Szafrana 4a, PL-65246 Zielona Gora, Poland
关键词
Gardner equation; KdV-type equations; Topics: solitons; Travelling wave solutions;
D O I
10.12693/APhysPolA.140.445
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In most of the studies concerning nonlinear wave equations of Korteweg-de Vries type, the authors focus on waves of elevation. Such waves have general form u(u) (x, t) = Af(x - vt), where A > 0. In this paper we show that if u(up)(x, t) = Af(x - vt) is the solution of a given nonlinear equation, then u(down)(x, t) = -aF(X - Vt), i.e. the inverted wave is the solution of the same equation, but with the changed sign of the parameter alpha. This property is common for Korteweg-de Vries equation, extended Korteweg-de Vries equation, fifth-order Korteweg-de Vries equation, Gardner equation, and their generalizations for cases with an uneven bottom.
引用
收藏
页码:445 / 449
页数:5
相关论文
共 50 条
  • [31] Some Exact Solutions of Two Fifth Order KdV-Type Nonlinear Partial Differential Equations
    Mia, Abdus Sattarl
    Akter, Tania
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2012, 25 (04): : 356 - 365
  • [32] Well-posedness for KdV-type equations with quadratic nonlinearity
    Hirayama, Hiroyuki
    Kinoshita, Shinya
    Okamoto, Mamoru
    JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (03) : 811 - 835
  • [33] Well-posedness for KdV-type equations with quadratic nonlinearity
    Hiroyuki Hirayama
    Shinya Kinoshita
    Mamoru Okamoto
    Journal of Evolution Equations, 2020, 20 : 811 - 835
  • [34] Discrete Crum's Theorems and Lattice KdV-Type Equations
    Zhang, Cheng
    Peng, Linyu
    Zhang, Da-jun
    THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 202 (02) : 165 - 182
  • [35] STABILITY OF SMALL PERIODIC WAVES IN FRACTIONAL KdV-TYPE EQUATIONS
    Johnson, Mathew A.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (05) : 3168 - 3193
  • [36] A hybrid LDG-HWENO scheme for KdV-type equations
    Luo, Dongmi
    Huang, Weizhang
    Qiu, Jianxian
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 313 : 754 - 774
  • [37] Discrete Crum’s Theorems and Lattice KdV-Type Equations
    Cheng Zhang
    Linyu Peng
    Da-jun Zhang
    Theoretical and Mathematical Physics, 2020, 202 : 165 - 182
  • [38] COMPLETE-INTEGRABILITY AND ANALYTIC SOLUTIONS OF A KDV-TYPE EQUATION
    CHEN, ZX
    GUO, BY
    XIANG, LW
    JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (12) : 2851 - 2855
  • [39] NONLINEAR-WAVE EQUATION OF KDV-TYPE, INTEGRABILITY AND SOLUTIONS
    GRAUEL, A
    LETTERE AL NUOVO CIMENTO, 1985, 42 (08): : 397 - 402
  • [40] Bifurcations of traveling wave solutions in a compound KdV-type equation
    Zhang, ZD
    Bi, QS
    CHAOS SOLITONS & FRACTALS, 2005, 23 (04) : 1185 - 1194