Inverted Solutions of KdV-Type and Gardner Equations

被引:1
|
作者
Karczewska, A. [1 ]
Rozmej, P. [2 ]
机构
[1] Univ Zielona Gora, Inst Math, Szafrana 4a, PL-65246 Zielona Gora, Poland
[2] Univ Zielona Gora, Inst Phys, Szafrana 4a, PL-65246 Zielona Gora, Poland
关键词
Gardner equation; KdV-type equations; Topics: solitons; Travelling wave solutions;
D O I
10.12693/APhysPolA.140.445
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In most of the studies concerning nonlinear wave equations of Korteweg-de Vries type, the authors focus on waves of elevation. Such waves have general form u(u) (x, t) = Af(x - vt), where A > 0. In this paper we show that if u(up)(x, t) = Af(x - vt) is the solution of a given nonlinear equation, then u(down)(x, t) = -aF(X - Vt), i.e. the inverted wave is the solution of the same equation, but with the changed sign of the parameter alpha. This property is common for Korteweg-de Vries equation, extended Korteweg-de Vries equation, fifth-order Korteweg-de Vries equation, Gardner equation, and their generalizations for cases with an uneven bottom.
引用
收藏
页码:445 / 449
页数:5
相关论文
共 50 条