Improved selective acetone sensing properties of Co-doped ZnO nanofibers by electrospinning

被引:258
|
作者
Liu, Li [1 ]
Li, Shouchun [1 ]
Zhuang, Juan [2 ]
Wang, Lianyuan [1 ]
Zhang, Jinbao [1 ]
Li, Haiying [1 ]
Liu, Zhen [1 ]
Han, Yu [1 ]
Jiang, Xiaoxue [3 ]
Zhang, Peng [3 ]
机构
[1] Jilin Univ, State Key Lab Superhard Mat, Coll Phys, Changchun 130012, Peoples R China
[2] Dalian Univ Technol, Sch Phys & Optoelect Engn, Dalian 116024, Peoples R China
[3] Jilin Univ, Coll Instrumentat & Elect Engn, Changchun 130012, Peoples R China
来源
SENSORS AND ACTUATORS B-CHEMICAL | 2011年 / 155卷 / 02期
关键词
ZnO; Semiconductors; Electrospinning; Nanofibers; Gas sensors; GAS SENSOR; ROOM-TEMPERATURE; METAL; FILM; NANOTUBES; FABRICATION; NANOBELTS; CATALYSIS; TEMPLATE; NANORODS;
D O I
10.1016/j.snb.2011.01.047
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Pure and Co-doped (0.3 wt%, 0.5 wt%, and 1 wt%) ZnO nanofibers are synthesized by an electrospinning method and followed by calcination. The as-synthesized nanofibers are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray (EDX) spectroscopy. Comparing with pure ZnO nanofibers, Co-doped nanofibers exhibit improved acetone sensing properties at 360 degrees C. The response of 0.5 wt% Co-doped ZnO nanofibers to 100 ppm acetone is about 16, which is 3.5 times larger than that of pure nanofibers (about 4.4). The response and recovery times of 0.5 wt% Co-doped ZnO nanofibers to 100 ppm acetone are about 6 and 4s, respectively. Moreover, Co-doped ZnO nanofibers can successfully distinguish acetone and ethanol/methanol, even in a complicated ambience. The high response and quick response/recovery are based on the one-dimensional nanostructure of ZnO nanofibers combining with the Co-doping effect. The selectivity is explained by the different optimized operating temperatures of Co-doped ZnO nanofibers to different gases. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:782 / 788
页数:7
相关论文
共 50 条
  • [21] Improved Acetone Sensing Properties of Electrospun Au-doped SnO2 Nanofibers
    Priya, M. J.
    Aswathy, P. M.
    Kavitha, M. K.
    Jayaraj, M. K.
    Kumar, K. Rajeev
    3RD INTERNATIONAL CONFERENCE ON OPTOELECTRONIC AND NANO MATERIALS FOR ADVANCED TECHNOLOGY (ICONMAT 2019), 2019, 2082
  • [22] The hierarchical nanostructured Co-doped WO3/carbon and their improved acetone sensing perfomance
    Saasa, Valentine
    Malwela, Thomas
    Lemmer, Yolandy
    Beukes, Mervyn
    Mwakikunga, Bonex
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2020, 117
  • [23] Bead-like Co-doped ZnO with improved microwave absorption properties
    Huang, Xiaogu
    Zhang, Mingji
    Qin, Yushuang
    Chen, Yunyun
    CERAMICS INTERNATIONAL, 2019, 45 (06) : 7789 - 7796
  • [24] Magnetophotoluminescence properties of Co-doped ZnO nanorods
    Lin, C. Y.
    Wang, W. H.
    Lee, C. -S.
    Sun, K. W.
    Suen, Y. W.
    APPLIED PHYSICS LETTERS, 2009, 94 (15)
  • [25] STUDY ON PHOTOLUMINESCENCE PROPERTIES OF Co-DOPED ZnO
    Guo, Shuxia
    Li, Jiwu
    Du, Zuliang
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2014, 28 (09):
  • [26] Magnetic properties of Co-doped ZnO nanoparticles
    Franco, A., Jr.
    Pessoni, S.
    Ribeiro, P. R. T.
    Machado, F. L. A.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2017, 426 : 347 - 350
  • [27] The magnetotransport properties of co-doped ZnO films
    Xu, Qingyu
    Hartmann, Lars
    Schmidt, Heidemarie
    Hochmuth, Holger
    Lorenz, Michael
    Schmidt-Grund, Ruediger
    Sturm, Chris
    Spemann, Daniel
    Grundmann, Marius
    PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2007, 893 : 1187 - +
  • [28] Electronic and Magnetic Properties of ZnO Doped and Co-doped with (Co, Cr)
    Rkhioui, N.
    Tahiri, N.
    El Bounagui, O.
    Laamara, R. Ahl
    Drissi, L. B.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2016, 29 (12) : 3167 - 3173
  • [29] Electronic and Magnetic Properties of ZnO Doped and Co-doped with (Co, Cr)
    N. Rkhioui
    N. Tahiri
    O. El Bounagui
    R. Ahl Laamara
    L. B. Drissi
    Journal of Superconductivity and Novel Magnetism, 2016, 29 : 3167 - 3173
  • [30] Zinc Oxide Coated Tin Oxide Nanofibers for Improved Selective Acetone Sensing
    Du, Haiying
    Li, Xiaogan
    Yao, Pengjun
    Wang, Jing
    Sun, Yanhui
    Dong, Liang
    NANOMATERIALS, 2018, 8 (07):