Preparation and Mechanical Properties of High-Performance Short Ramie Fiber-Reinforced Polypropylene Composites

被引:36
|
作者
Feng, Yulin [1 ]
Hu, Yuexin [1 ]
Zhao, Guiyan [1 ]
Yin, Jinghua [1 ]
Jiang, Wei [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China
基金
中国国家自然科学基金;
关键词
biofibers; polypropylene; reinforcement; composites; mechanical properties; NATURAL FIBERS; BEHAVIOR;
D O I
10.1002/app.34281
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Short ramie fiber (RF) was used to reinforce the polypropylene (PP). The composites were prepared in a twin-screw extruder followed by injection molding. The experimental results showed that both the strength and the modulus of the composites increase considerably with increasing RF content. The tensile strength and flexural strength are as high as 67 and 80 MPa by the incorporation of ramie up to 30 wt %. To the best of our knowledge, this is one of the best results for short natural fiber-reinforced PP composites. However, the preparation method in this study is more simple and economic. This short RF-reinforced PP composites extend the application field for short-nature fiber-reinforced PP composites. Morphological analysis revealed that it is the high aspect ratio of the fiber and good interfacial compatibility that result in the high performance of the composites. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 122: 1564-1571, 2011
引用
收藏
页码:1564 / 1571
页数:8
相关论文
共 50 条
  • [41] SURFACE PROPERTIES OF CARBON FIBERS: IMPACT ON THE MECHANICAL PERFORMANCE OF SHORT FIBER REINFORCED POLYPROPYLENE COMPOSITES
    Unterweger, Christoph
    Duchoslav, Jiri
    Stifter, David
    Furst, Christian
    20TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS, 2015,
  • [42] Mechanical and biodegradation properties of bamboo fiber-reinforced starch/polypropylene biodegradable composites
    Yang, Feiwen
    Long, Haibo
    Xie, Baojun
    Zhou, Wuyi
    Luo, Ying
    Zhang, Chaoqun
    Dong, Xianming
    JOURNAL OF APPLIED POLYMER SCIENCE, 2020, 137 (20)
  • [43] Banana fiber-reinforced polypropylene composites: A study of the physico-mechanical properties
    Haydar U. Zaman
    Mubarak A. Khan
    Ruhul A. Khan
    Fibers and Polymers, 2013, 14 : 121 - 126
  • [44] Crystallization and mechanical properties of basalt fiber-reinforced polypropylene composites with different elastomers
    Lin Sang
    Guojun Zheng
    Wenbin Hou
    Xiaoli Yang
    Zhiyong Wei
    Journal of Thermal Analysis and Calorimetry, 2018, 134 : 1531 - 1543
  • [45] Banana Fiber-Reinforced Polypropylene Composites: A Study of the Physico-Mechanical Properties
    Zaman, Haydar U.
    Khan, Mubarak A.
    Khan, Ruhul A.
    FIBERS AND POLYMERS, 2013, 14 (01) : 121 - 126
  • [46] Effects of hybrid yarn preparation technique and fiber sizing on the mechanical properties of continuous glass fiber-reinforced polypropylene composites
    Merter, N. Emrah
    Baser, Gulnur
    Tanoglu, Metin
    JOURNAL OF COMPOSITE MATERIALS, 2016, 50 (12) : 1697 - 1706
  • [47] Mechanical and Tribological Properties of Short Basalt Fiber-reinforced Polyoxymethylene Composites
    Liu, Chenghe
    Long, Chunguang
    Chen, Lei
    Liu, Junpeng
    Cao, Taishan
    Zhang, Jian
    POLYMER-KOREA, 2016, 40 (06) : 836 - 845
  • [48] High-Performance Fiber-Reinforced Composites: Latest Advances and Prospects
    Wang, Lei
    Tang, Shengwen
    BUILDINGS, 2023, 13 (04)
  • [49] Creep and shrinkage of high-performance fiber-reinforced cementitious composites
    Rouse, Jon M.
    Billington, Sarah L.
    ACI MATERIALS JOURNAL, 2007, 104 (02) : 129 - 136
  • [50] Creep and shrinkage of high-performance fiber-reinforced cementitious composites
    Rouse, Jon M.
    Billington, Sarah L.
    2007, American Concrete Institute, 38800 Country Club Drive, Farmington Hills, MI 48331, United States (104)