Features of Relaxation of the Remanent Magnetization of Antiferromagnetic Nanoparticles by the Example of Ferrihydrite

被引:4
|
作者
Balaev, D. A. [1 ,2 ]
Krasikov, A. A. [1 ]
Balaev, A. D. [1 ]
Stolyar, S. V. [1 ,2 ,3 ]
Ladygina, V. P. [2 ]
Iskhakov, R. S. [1 ]
机构
[1] Russian Acad Sci, Kirensky Inst Phys, Siberian Branch, Krasnoyarsk Sci Ctr, Krasnoyarsk 660036, Russia
[2] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[3] Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Krasnoyarsk 660036, Russia
关键词
antiferromagnetic nanoparticles; ferrihydrite; exchange bias; magnetization relaxation; EXCHANGE-BIAS; NIO NANOPARTICLES; HYSTERESIS ANOMALIES; PARTICLE-SIZE; TEMPERATURE; DEPENDENCE; SUBSYSTEMS; RESONANCE; STATE; SPIN;
D O I
10.1134/S1063783420070033
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The relaxation of the remanent magnetization of antiferromagnetically ordered ferrihydrite nanoparticles at the exchange bias effect implemented in these systems has been investigated. The magnetization relaxation depends logarithmically on time, which is typical of the thermally activated hoppings of particle magnetic moments through the potential barriers caused by the magnetic anisotropy. The barrier energy obtained by processing of the remanent magnetization relaxation data under the field cooling conditions significantly exceeds the barrier energy under standard (zero field cooling) conditions. The observed difference points out the possibility of using the remanent magnetization relaxation to analyze the mechanisms responsible for the exchange bias effect in antiferromagnetic nanoparticles and measure the parameters of the exchange coupling of magnetic subsystems in such objects.
引用
收藏
页码:1172 / 1178
页数:7
相关论文
共 50 条
  • [31] Comment on "Thermoinduced magnetization in nanoparticles of antiferromagnetic materials"
    Silva, NJO
    Carlos, LD
    Amaral, VS
    PHYSICAL REVIEW LETTERS, 2005, 94 (03)
  • [32] Thermoinduced magnetization and uncompensated spins in antiferromagnetic nanoparticles
    Madsen, Daniel Esmarch
    Morup, Steen
    PHYSICAL REVIEW B, 2006, 74 (01)
  • [33] The anhysteretic remanent magnetization of magnetite-silica composite nanoparticles
    Kharitonskii, Petr
    Frolov, Anatoly
    Gareev, Kamil
    Korolev, Dmitry
    Kosterov, Andrei
    Sergienko, Elena
    Ivanova, Eugenia
    Vlasenko, Sergei
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON METAMATERIALS AND NANOPHOTONICS (METANANO-2017), 2017, 1874
  • [34] Comment on "Thermoinduced magnetization in nanoparticles of antiferromagnetic materials"
    MacDonald, AH
    Canali, CM
    PHYSICAL REVIEW LETTERS, 2005, 94 (08)
  • [35] Magnetic relaxation in a suspension of antiferromagnetic nanoparticles
    Yu. L. Raikher
    V. I. Stepanov
    Journal of Experimental and Theoretical Physics, 2008, 107 : 435 - 444
  • [36] Magnetic Relaxation in a Suspension of Antiferromagnetic Nanoparticles
    Raikher, Yu. L.
    Stepanov, V. I.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2008, 107 (03) : 435 - 444
  • [37] Equilibrium magnetization and magnetization relaxation of multicore magnetic nanoparticles
    Ilg, Patrick
    PHYSICAL REVIEW B, 2017, 95 (21)
  • [38] Relaxation of thermo-remanent magnetization in Fe-Cr GMR multilayers
    Patel, R. S.
    Majumdar, A. K.
    Nigam, A. K.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 309 (02) : 256 - 262
  • [39] Advanced magnetic anisotropy determination through isothermal remanent magnetization of nanoparticles
    Hillion, A.
    Tamion, A.
    Tournus, F.
    Gaier, O.
    Bonet, E.
    Albin, C.
    Dupuis, V.
    PHYSICAL REVIEW B, 2013, 88 (09)
  • [40] On the thermodynamics of antiferromagnetic nanoparticles by example of Mossbauer spectroscopy
    Chuev, M. A.
    JETP LETTERS, 2012, 95 (06) : 295 - 301