Features of Relaxation of the Remanent Magnetization of Antiferromagnetic Nanoparticles by the Example of Ferrihydrite

被引:4
|
作者
Balaev, D. A. [1 ,2 ]
Krasikov, A. A. [1 ]
Balaev, A. D. [1 ]
Stolyar, S. V. [1 ,2 ,3 ]
Ladygina, V. P. [2 ]
Iskhakov, R. S. [1 ]
机构
[1] Russian Acad Sci, Kirensky Inst Phys, Siberian Branch, Krasnoyarsk Sci Ctr, Krasnoyarsk 660036, Russia
[2] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[3] Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Krasnoyarsk 660036, Russia
关键词
antiferromagnetic nanoparticles; ferrihydrite; exchange bias; magnetization relaxation; EXCHANGE-BIAS; NIO NANOPARTICLES; HYSTERESIS ANOMALIES; PARTICLE-SIZE; TEMPERATURE; DEPENDENCE; SUBSYSTEMS; RESONANCE; STATE; SPIN;
D O I
10.1134/S1063783420070033
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The relaxation of the remanent magnetization of antiferromagnetically ordered ferrihydrite nanoparticles at the exchange bias effect implemented in these systems has been investigated. The magnetization relaxation depends logarithmically on time, which is typical of the thermally activated hoppings of particle magnetic moments through the potential barriers caused by the magnetic anisotropy. The barrier energy obtained by processing of the remanent magnetization relaxation data under the field cooling conditions significantly exceeds the barrier energy under standard (zero field cooling) conditions. The observed difference points out the possibility of using the remanent magnetization relaxation to analyze the mechanisms responsible for the exchange bias effect in antiferromagnetic nanoparticles and measure the parameters of the exchange coupling of magnetic subsystems in such objects.
引用
收藏
页码:1172 / 1178
页数:7
相关论文
共 50 条
  • [1] Features of Relaxation of the Remanent Magnetization of Antiferromagnetic Nanoparticles by the Example of Ferrihydrite
    D. A. Balaev
    A. A. Krasikov
    A. D. Balaev
    S. V. Stolyar
    V. P. Ladygina
    R. S. Iskhakov
    Physics of the Solid State, 2020, 62 : 1172 - 1178
  • [2] Remanent magnetization in CoO antiferromagnetic nanoparticles
    Silva, N. J. O.
    Millan, A.
    Palacio, F.
    Martins, M.
    Trindade, T.
    Puente-Orench, I.
    Campo, J.
    PHYSICAL REVIEW B, 2010, 82 (09):
  • [3] Pulsed Field-Induced Magnetization Switching in Antiferromagnetic Ferrihydrite Nanoparticles
    Balaev, D. A.
    Krasikov, A. A.
    Velikanov, D. A.
    Popkov, S. I.
    Dubynin, N. V.
    Stolyar, S. V.
    Ladygina, V. P.
    Yaroslavtsev, R. N.
    PHYSICS OF THE SOLID STATE, 2018, 60 (10) : 1973 - 1978
  • [4] Temperature variation of surface magnetization in antiferromagnetic six lines ferrihydrite nanoparticles
    Rani, Chandni
    Tiwari, S. D.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2023, 587
  • [5] Pulsed Field-Induced Magnetization Switching in Antiferromagnetic Ferrihydrite Nanoparticles
    D. A. Balaev
    A. A. Krasikov
    D. A. Velikanov
    S. I. Popkov
    N. V. Dubynin
    S. V. Stolyar
    V. P. Ladygina
    R. N. Yaroslavtsev
    Physics of the Solid State, 2018, 60 : 1973 - 1978
  • [6] Dynamical study of remanent magnetization in nanoparticles
    Grinstein, G
    Held, GA
    Koch, RH
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2001, 237 (01) : 90 - 96
  • [7] RELAXATION OF REMANENT MAGNETIZATION IN A MODEL SPIN GLASS
    FIBICH, M
    JOURNAL OF PHYSICS F-METAL PHYSICS, 1978, 8 (09): : 1991 - 1997
  • [8] Effect of a dc bias magnetic field on the magnetization relaxation of antiferromagnetic nanoparticles
    Ouari, Bachir
    Kalmykov, Yuri P.
    PHYSICAL REVIEW B, 2011, 83 (06):
  • [9] RELAXATION OF THE REMANENT MAGNETIZATION OF DILUTE ANISOTROPIC ANTIFERROMAGNETS
    HAN, SJ
    BELANGER, DP
    PHYSICAL REVIEW B, 1992, 46 (05): : 2926 - 2932
  • [10] Separating the contributions of the magnetic subsystems in antiferromagnetic ferrihydrite nanoparticles by analyzing the magnetization in fields of up to 250 kOe
    Krasikov, A. A.
    Balaev, D. A.
    Balaev, A. D.
    Stolyar, S. V.
    Yaroslavtsev, R. N.
    Iskhakov, R. S.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2024, 592