Layer-dependent band to band tunneling in WSe2/ReS2van der Waals heterojunction

被引:3
|
作者
Ou, Yang [1 ,2 ]
Liu, Baishan [1 ,2 ]
Kang, Zhuo [1 ,2 ]
Liao, Qingliang [1 ,2 ]
Zhang, Zheng [1 ,2 ]
Zhang, Yue [1 ,2 ]
机构
[1] Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing Key Lab Adv Energy Mat & Technol, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
van der Waals heterojunction; tunneling field-effect transistors; band to band tunneling; direct-indirect band gap transition; TRANSITION-METAL DICHALCOGENIDES; ELECTRONIC-PROPERTIES; HETEROSTRUCTURES; GRAPHENE; MOS2; TRANSISTORS; MONOLAYER; GROWTH;
D O I
10.1088/1361-6463/ab8f52
中图分类号
O59 [应用物理学];
学科分类号
摘要
Van der Waals (vdW) heterostructures are promising for building tunneling field-effect transistors (TFETs), owing to an inherent narrow vdW gap between two stacked materials induced by the dangling bond free surface. However, the band to band tunneling (BTBT) of such a vdW heterostructure TFET strongly depends on the layer-dependent band structure variation at the interface. Here, we report a first principle simulation on the BTBT transition of the monolayer ReS(2)based heterostructures with monolayer and bilayer WSe2. An obvious decrease of the turn-on gate voltage from 36 V to 12 V was achieved by adding a layer of WSe(2)due to the band gap narrowing and momentum conservative Gamma-Gamma tunneling. Under the gate voltage of 20 V with bias of 0.271 V, the upper limit of the BTBT saturate current density in bilayer WSe(2)vdW heterojunction can reach 934 mu A mu m(-1). These results show the bilayer WSe(2)heterojunction could be an ideal candidate for lower power and high operating speed TFETs.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] WSe2/MoS2 and MoTe2/SnSe2 van der Waals heterostructure transistors with different band alignment
    Li, Chao
    Yan, Xiao
    Song, Xiongfei
    Bao, Wenzhong
    Ding, Shijin
    Zhang, David Wei
    Zhou, Peng
    NANOTECHNOLOGY, 2017, 28 (41)
  • [22] WSe2/n-GaN and WSe2/p-GaN heterojunction band alignment
    Wei, Wanting
    Zhao, Guijuan
    Liu, Xiacong
    Lv, Xiurui
    Wang, Xingliang
    Liu, Guipeng
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2024, 39 (11)
  • [23] Tunable WSe2/WS2 van der Waals heterojunction for self-powered photodetector and photovoltaics
    Lin, Pei
    Yang, Jinke
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 842
  • [24] A van der Waals heterojunction based on monolayers of MoS2 and WSe2 for overall solar water splitting
    Dalla Valle, Paul
    Cavassilas, Nicolas
    NANOSCALE ADVANCES, 2022, 4 (13): : 2816 - 2822
  • [25] Enhanced valley splitting of WSe2 in twisted van der Waals WSe2/CrI3 heterostructures
    Mei Ge
    Han Wang
    Jizheng Wu
    Chen Si
    Junfeng Zhang
    Shengbai Zhang
    npj Computational Materials, 8
  • [26] Charge Transport in MoS2/WSe2 van der Waals Heterostructure with Tunable Inversion Layer
    Doan, Manh-Ha
    Jin, Youngjo
    Adhikari, Subash
    Lee, Sanghyub
    Zhao, Jiong
    Lim, Seong Chu
    Lee, Young Hee
    ACS NANO, 2017, 11 (04) : 3832 - 3840
  • [27] Enhanced valley splitting of WSe2 in twisted van der Waals WSe2/CrI3 heterostructures
    Ge, Mei
    Wang, Han
    Wu, Jizheng
    Si, Chen
    Zhang, Junfeng
    Zhang, Shengbai
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [28] High-performance photodetector based on ReS2/WSe2/Te dual van der Waals heterojunctions
    Wang, Shuailong
    Wen, Yuanbo
    Zhan, Yaxin
    Wu, Zhangting
    Zhang, Yang
    JOURNAL OF MATERIALS SCIENCE, 2024, 59 (05) : 2024 - 2034
  • [29] High-performance photodetector based on ReS2/WSe2/Te dual van der Waals heterojunctions
    Shuailong Wang
    Yuanbo Wen
    Yaxin Zhan
    Zhangting Wu
    Yang Zhang
    Journal of Materials Science, 2024, 59 : 2024 - 2034
  • [30] Layer-dependent interface reconstruction and strain modulation in twisted WSe2
    Cai, Xiangbin
    An, Liheng
    Feng, Xuemeng
    Wang, Shi
    Zhou, Zishu
    Chen, Yong
    Cai, Yuan
    Cheng, Chun
    Pan, Xiaoqing
    Wang, Ning
    NANOSCALE, 2021, 13 (32) : 13624 - 13630