Generalized Stepanov type theorem with applications over metric-measure spaces

被引:0
|
作者
Ranjbar-Motlagh, Alireza [1 ]
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
来源
HOUSTON JOURNAL OF MATHEMATICS | 2008年 / 34卷 / 02期
关键词
Rademacher and Stepanov theorems; generalized differentiability; Sobolev and bounded variation spaces; Lipschitz maps; metric-measure spaces;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this article is to extend an L(p)-type generalization of Stepanov's differentiability theorem in metric-measure space. This generalized Stepanov type theorem is applied to the Sobolev and bounded variation functions in order to show the L(p)-type generalized differentiability for such functions. The proof of this generalized differentiability theorem is a combination of the proofs of Campanato and Stepanov theorems which is an extension of author's work to abstract spaces. Moreover, we give a positive answer to a question of Balogh-Rogovin-Zurchcr about L(p)-type generalized differentiability of BV functions over metric-measure spaces.
引用
收藏
页码:623 / 635
页数:13
相关论文
共 50 条
  • [31] Nagy type inequalities in metric measure spaces and some applications
    Babenko, V. F.
    Babenko, V. V.
    Kovalenko, O., V
    Parfinovych, N., V
    [J]. CARPATHIAN MATHEMATICAL PUBLICATIONS, 2023, 15 (02) : 563 - 575
  • [32] Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds
    Fabio Cavalletti
    Andrea Mondino
    [J]. Inventiones mathematicae, 2017, 208 : 803 - 849
  • [33] THE HAKE'S THEOREM ON METRIC MEASURE SPACES
    Singh, Surinder Pal
    Rana, Inder K.
    [J]. REAL ANALYSIS EXCHANGE, 2013, 39 (02) : 447 - 457
  • [34] The metric-valued Lebesgue differentiation theorem in measure spaces and its applications
    Lucic, Danka
    Pasqualetto, Enrico
    [J]. ADVANCES IN OPERATOR THEORY, 2023, 8 (02)
  • [35] The metric-valued Lebesgue differentiation theorem in measure spaces and its applications
    Danka Lučić
    Enrico Pasqualetto
    [J]. Advances in Operator Theory, 2023, 8
  • [36] A splitting theorem on smooth metric measure spaces
    Nguyen Thac Dung
    [J]. ARCHIV DER MATHEMATIK, 2012, 99 (02) : 179 - 187
  • [37] A splitting theorem on smooth metric measure spaces
    Nguyen Thac Dung
    [J]. Archiv der Mathematik, 2012, 99 : 179 - 187
  • [38] A Generalized Fixed Point Theorem in Fuzzy b-Metric Spaces and Applications
    Dahhouch, Mohamed
    Makran, Noreddine
    Marzouki, Brahim
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42 : 13 - 13
  • [39] A FIXED POINT THEOREM IN GENERALIZED METRIC SPACES
    Kikina, Luljeta
    Kikina, Kristaq
    [J]. DEMONSTRATIO MATHEMATICA, 2013, 46 (01) : 181 - 190
  • [40] Hardy spaces Hp over non-homogeneous metric measure spaces and their applications
    Xing Fu
    HaiBo Lin
    DaChun Yang
    DongYong Yang
    [J]. Science China Mathematics, 2015, 58 : 309 - 388